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Introduction

The central question of these mathematical lectures is the following:

• Is QFT logically consistent?

Although it may not seem so, this question is quite relevant for physics. For
example, if QFT contained a contradiction and, say, the magnetic moment of the
electron could be computed in two different ways giving two completely different
results, which of them should be compared with experiments? It turns out that
such a situation is not completely ruled out in QFT, since we don’t have enough
control over the convergence of the perturbative series. If we take first few terms
of this series, we often obtain excellent agreement with experiments. But if we
managed to compute all of them and sum them up, most likely the result would
be infinity.

For this and other reasons, the problem of logical consistency of QFT fascinated
generations of mathematical physicists. They managed to solve it only in toy
models, but built impressive mathematical structures some of which I will try to
explain in these lectures.

The strategy to study the logical consistency of QFT can be summarized as
follows: Take QFT as presented in the physics part of this course. Take the
whole mathematics with its various sub-disciplines. Now try to ‘embed’ QFT into
mathematics, where the problem of logical consistency is under good control. The
‘image’ of this embedding will be some subset of mathematics which can be called
Mathematical QFT. It intersects with many different sub-disciplines including al-
gebra, analysis, group theory, measure theory and many others. It differs from
the original QFT in several respects: First, some familiar concepts from the phys-
ical theory will not reappear on the mathematics side, as tractable mathematical
counterparts are missing. Second, many concepts from mathematics will enter
the game, some of them without direct physical meaning (e.g. different notions
of continuity and convergence). Their role is to control logical consistency within
mathematics.

It should also be said that the efforts to ‘embed’ QFT into mathematics trig-
gered a lot of new mathematical developments. Thus advancing mathematics is
another important source of motivation to study Mathematical QFT.
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1 Wightman quantum field theory

The main references for this section are [1, Section VIII], [2, Section IX.8,X.7].

1.1 Relativistic Quantum Mechanics

We consider a quantum theory given by a Hilbert space H (a space with a scalar
product 〈 | 〉, which is complete in the norm ‖ · ‖ =

√
〈 · |· 〉 ) and:

(a) Observables {Oi}i∈I. Hermitian / self-adjoint operators.

(b) Symmetry transformations {Uj}j∈J. Unitary/anti-unitary operators.

1.1.1 Observables

1. Consider an operator O : D(O)→ H i.e. a linear map from a dense domain
D(O) ⊂ H to H. D(O) = H only possible for bounded operators O (i.e.
with bounded spectrum). In other words, O ∈ L(D(O),H), which is the
space of linear maps between the two spaces.

2. D(O†) := {Ψ ∈ H | |〈Ψ|OΨ′〉| ≤ cΨ‖Ψ′‖ for all Ψ′ ∈ D(O) }. Thereby, O†Ψ
is well defined for any Ψ ∈ D(O†) via the Riesz theorem.

3. We say that O is Hermitian, if D(O) ⊂ D(O†) and O†Ψ = OΨ for all
Ψ ∈ D(O).

4. We say that O is self-adjoint, if it is Hermitian and D(O) = D(O†). Ad-
vantage: we can define eitO and then also a large class of other functions via
the Fourier transform. E.g. f(O) = (2π)−1/2

∫
dt eitOf̌(t) for f ∈ C∞0 (R)

(smooth, compactly supported, complex-valued).

5. We say that operators O1, O2 weakly commute on some dense domain D ⊂
D(O1) ∩D(O2) ∩D(O†1) ∩D(O†2) if for all Ψ1,Ψ2 ∈ D

0 = 〈Ψ1|[O1, O2]Ψ2〉 = 〈Ψ1|O1O2Ψ2〉 − 〈Ψ1|O2O1Ψ2〉
= 〈O†1Ψ1|O2Ψ2〉 − 〈O†2Ψ1|O1Ψ2〉. (1)

6. We say that two self-adjoint operators O1, O2 strongly commute, if

[eit1O1 , eit2O2 ] = 0 for all t1, t2 ∈ R. (2)

No domain problems here, since eitO is always bounded, hence D(eitO) = H.

7. Let O1, . . . , On be a family of self-adjoint operators which mutually strongly
commute. For any f ∈ C∞0 (Rn) we define

f(O1, . . . , On) = (2π)−n/2
∫
dt1 . . . dtn e

it1O1 . . . eitnOn f̌(t1, . . . , tn). (3)
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Definition 1.1 [4] The joint spectrum Sp(O1, . . . , On) of such a family of
operators is defined as follows: p ∈ Sp(O1, . . . , On) if for any open neigh-
bourhood Vp of this point there is a function f ∈ C∞0 (Rn) s.t. suppf ⊂ Vp
and f(O1, . . . , On) 6= 0.

It is easy to see that for one operator O with purely point spectrum (e.g. the
Hamiltonian of the harmonic oscillator) Sp(O) is the set of all the eigenvalues.
But the above definition captures also the continuous spectrum without using
‘generalized eigenvectors’.

1.1.2 Symmetry transformations

We treat today only symmetries implemented by unitaries.

1. A linear bijection U : H → H is called a unitary if 〈UΨ1|UΨ2〉 = 〈Ψ1|Ψ2〉 for
all Ψ1,Ψ2 ∈ H. We denote by U(H) the group of all unitaries onH. Unitaries
are suitable to describe symmetries as they preserve transition amplitudes
of physical processes.

2. The Minkowski spacetime is invariant under Poincaré transformations x 7→
Λx + a, where (Λ, a) ∈ P↑+ (the proper ortochronous Poincaré group). We

consider a unitary representation of this group on H, i.e. a map P↑+ 3
(Λ, a) 7→ U(Λ, a) ∈ U(H) with the property

U(Λ1, a1)U(Λ2, a2) = U((Λ1, a1)(Λ2, a2)), (4)

i.e. a group homomorphism.

3. We say that such a representation is continuous, if (Λ, a) 7→ 〈Ψ1|U(Λ, a)Ψ2〉 ∈
C is a continuous function for any Ψ1,Ψ2 ∈ H.

1.1.3 Energy-momentum operators and the spectrum condition

The following fact is an immediate consequence of the Stone theorem and conti-
nuity is crucial here:

Theorem 1.2 Given a continuous unitary representation of translations R4 3
a 7→ U(a) := U(I, a) ∈ U(H), there exist four strongly commuting self-adjoint
operators Pµ, µ = 0, 1, 2, 3, s.t.

U(a) = eiPµa
µ

. (5)

We call P = {P0, P1, P2, P3} the energy-momentum operators.

In physical theories Pµ are unbounded operators (since values of the energy-
momentum can be arbitrarily large), defined on some domains D(Pµ) ⊂ H. How-
ever, to guarantee stability of physical systems, the energy should be bounded
from below in any inertial system. The mathematical formulation is the spectrum
condition:
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Definition 1.3 We say that a Poincaré covariant quantum theory satisfies the
spectrum condition if

SpP := Sp(P0, P1, P2, P3) ⊂ V +, (6)

where V + := { (p0, ~p) ∈ R4 | p0 ≥ |~p| } is the closed future lightcone.

1.1.4 Vacuum state

1. A unit vector Ω ∈ H is called the vacuum state if U(Λ, a)Ω = Ω for all
(Λ, a) ∈ R4. This implies PµΩ = 0 for µ = 0, 1, 2, 3.

2. By the spectrum condition, Ω is the ground state of the theory.

3. We say that the vacuum is unique, if Ω is the only such vector in H up to
multiplication by a phase.

1.1.5 Relativistic Quantum Mechanics: Summary

Definition 1.4 A relativistic quantum mechanics is given by

1. Hilbert space H.

2. A continuous unitary representation P↑+ 3 (Λ, a) 7→ U(Λ, a) ∈ U(H) satisfy-
ing the spectrum condition.

3. Observables {Oi}i∈I, including Pµ.

Furthermore, H may contain a vacuum vector Ω (unique or not).

So far in our collection of observables {Oi}i∈I we have identified only global quanti-
ties like Pµ. (For example, to measure P0, we would have to add up the energies of
all the particles in the universe of our theory). But actual measurements are per-
formed locally, i.e. in bounded regions of spacetime and we would like to include
the corresponding observables. We have to do it in a way which is consistent with
Poincaré symmetry, spectrum condition and locality (Einstein causality). This is
the role of quantum fields.

1.2 Quantum fields as operator-valued distributions

1.2.1 Tempered distributions

We recall some definitions:

1. The Schwartz-class functions:

S = { f ∈ C∞(R4) | sup
x∈R4

|xα∂βf(x)| <∞, α, β ∈ N4
0}, (7)

where xα := xα0
0 . . . xα3

3 and ∂β = ∂|β|

(∂x0)β0 ...(∂x3)β3
, |β| = β0 + · · ·+ β3.

4



2. The semi-norms ‖f‖α,β := supx∈R4 |xα∂βf(x)| give a notion of convergence
in S: fn → f in S if ‖fn − f‖α,β → 0 for all α, β.

3. We say that a linear functional ϕ : S → C is continuous, if for any finite set
F of multiindices there is a constant cF s.t.

|ϕ(f)| ≤ cF
∑
α,β∈F

‖f‖α,β. (8)

(Note that if fn → f in S then ϕ(fn) → ϕ(f)). Such continuous func-
tionals are called tempered distributions and form the space S ′ which is the
topological dual of S.

Any measurable, polynomially growing function x 7→ ϕ(x) defines a tempered
distribution via

ϕ(f) =

∫
d4xϕ(x)f(x). (9)

The notation (9) is often used also if there is no underlying function, e.g. δ(f) =:∫
δ(x)f(x)d4x = f(0).

Definition 1.5 We consider:

1. A map S 3 f 7→ φ(f) ∈ L(D(φ(f)),H).

2. A dense domain D ⊂ H s.t. for all f ∈ S

• D ⊂ D(φ(f)) ∩D(φ(f)†),

• φ(f) : D → D,

• φ(f)† : D → D.

We say that (φ,D) is an operator valued distribution if for all Ψ1,Ψ2 ∈ D the map

S 3 f 7→ 〈Ψ1|φ(f)Ψ2〉 ∈ C (10)

is a tempered distribution. We say that (φ,D) is Hermitian, if φ(f) is a Hermitian
operator for any real valued f ∈ S.

Note that a posteriori S 3 f 7→ φ(f) ∈ L(D,D).

1.2.2 Wightman QFT

Definition 1.6 A theory of one scalar Hermitian Wightman field is given by:

1. A relativistic quantum theory (H, U) with a unique vacuum state Ω ∈ H.

2. A Hermitian operator-valued distribution (φ,D) s.t. Ω ∈ D and U(Λ, a)D ⊂
D for all (Λ, a) ∈ P↑+ satisfying:
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(a) (Locality) [φ(f1), φ(f2)] = 0 if supp f1 and supp f2 spacelike separated.
(In the sense of weak commutativity on D).

(b) (Covariance) U(Λ, a)φ(f)U(Λ, a)† = φ(f(Λ,a)), for all (Λ, a) ∈ P↑+ and
f ∈ S. Here f(Λ,a)(x) = f(Λ−1(x− a)).

(c) (Cyclicity of the vacuum) D = Span{φ(f1) . . . φ(fm)Ω | f1, . . . fm ∈ S,m ∈
N0 } is a dense subspace of H.

The distribution (φ,D) is called the Wightman quantum field.

Remarks:

1. Operator valued functions satisfying the Wightman axioms do not exist (we
really need distributions). The physical reason is the uncertainty relation:
Measuring φ strictly at a point x causes very large fluctuations of energy and
momentum, which prevent φ(x) from being a well defined operator. Such
observations were made already in [7], before the theory of distributions was
developed.

2. It is possible to choose D = D.

Example: Let H be the symmetric Fock space, then the energy-momentum op-
erators

P 0 =

∫
d3p

(2π)32p0
p0a†(p)a(p), ~P =

∫
d3p

(2π)32p0
~p a†(p)a(p), (11)

where p0 =
√
p2 +m2, satisfy the spectrum condition and generate a unitary

representation of translations U(a) = eiPµa
µ
. Clearly, Ω = |0〉 is the unique vacuum

state of this relativistic QM. The Hermitian operator-valued distribution, given in
the function notation by

φ0(x) =

∫
d3p

(2π)32p0
(eipxa†(p) + e−ipxa(p)). (12)

is a scalar Hermitian Wightman field.
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2 Path integrals

The main references for this section are [5, Chapter 6] [6, Chapter 1].

2.1 Wightman and Schwinger functions

Consider a theory (H, U,Ω, φ,D) of one scalar Wightman field.

• Wightman functions are defined as

Wn(x1, . . . , xn) = 〈Ω|φ(x1) . . . φ(xn)Ω〉. (13)

They are tempered distributions.

• Green functions are defined as

Gn(x1, . . . , xn) = 〈Ω|T (φ(x1) . . . φ(xn))Ω〉 (14)

Recall that Tφ(x1)φ(x2) = θ(x0
1−x0

2)φ(x1)φ(x2)+θ(x0
2−x0

1)φ(x2)φ(x1). This
multiplication of distributions by a discontinuous function may be ill-defined
in the Wightman setting. Approximation of θ by smooth functions may be
necessary. Then we obtain tempered distributions.

• Euclidean Green functions (Schwinger functions) are defined as

GE,n(x1, . . . , xn) = Wn((ix0
1, ~x1), . . . , (ix0

n, ~xn)). (15)

The analytic continuation is justified in the Wightman setting. We obtain
real-analytic functions on R4n

6= = {(x1, . . . , xn) |xi 6= xj ∀i 6= j }, symmetric
under the exchange of variables.

The Schwinger functions are central objects of mathematical QFT based on
path-integrals. The idea is to express GE,n as moment functions of a measure µ
on the space S ′R of real-valued tempered distributions

GE,n(x1, . . . , xn) =

∫
S′R

ϕ(x1) . . . ϕ(xn)dµ(ϕ). (16)

Today’s lecture:

• Measure theory on topological spaces.

• Conditions on dµ which guarantee that formula (16) really gives Schwinger
functions of some Wightman QFT. (Osterwalder-Schrader axioms).

• Remarks on construction of interacting functional measures dµ
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2.2 Elements of measure theory

1. Def. We say that X is a topological space, if it comes with a family of subsets
T = {Oi}i∈I of X satisfying the following axioms:

• ∅, X ∈ T ,

•
⋃
j∈JOj ∈ T ,

•
⋂N
j=1Oj ∈ T .

Oi are called the open sets.

2. Example: S ′R is a topological space. In fact, given ϕ0 ∈ S ′R, a finite family
J1, . . . JN ∈ SR and ε1, . . . , εN > 0 we can define a neighbourhood of ϕ0 as
follows:

B(ϕ0; J1, . . . , JN ; ε1, . . . εN)

:= {ϕ ∈ S ′R | |ϕ(J1)− ϕ0(J1)| < ε1, . . . , |ϕ(JN)− ϕ0(JN)| < εN }. (17)

All open sets in S ′R can be obtained as unions of such neighbourhoods.

3. Def. Let X be a topological space. A familyM of subsets of X is a σ-algebra
in X if it has the following properties:

• X ∈M,

• A ∈M⇒ X\A ∈M,

• An ∈M, n ∈ N, ⇒ A :=
⋃∞
n=1An ∈M.

If M is a σ-algebra in X then X is called a measurable space and elements
of M are called measurable sets.

4. Def. The Borel σ-algebra is the smallest σ-algebra containing all open sets
of X. Its elements are called Borel sets.

5. Def. Let X be a measurable space and Y a topological space. Then a map
f : X → Y is called measurable if for any open V ⊂ Y the inverse image
f−1(V ) is a measurable set.

6. Def. A measure is a function µ : M→ [0,∞] s.t. for any countable family
of disjoint sets Ai ∈M we have

µ(
∞⋃
i=1

Ai) =
∞∑
i=1

µ(Ai). (18)

Also, we assume that µ(A) <∞ for at least one A ∈M.

• If µ(X) = 1, we say that µ is a probability measure.

• If µ is defined on the Borel σ-algebra, we call it a Borel measure.
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7. We denote by Lp(X, dµ), 1 ≤ p < ∞ the space of measurable functions
f : X → C s.t.

‖f‖p :=

(∫
X

|f(x)|pdµ(x)

)1/p

<∞. (19)

We denote by Lp(X, dµ) the space of equivalence classes of functions from
Lp(X, dµ) which are equal except at sets of measure zero. The following
statements are known as the Riesz-Fisher theorem:

• Lp(X, dµ) is a Banach space with the norm (19).

• L2(X, dµ) is even a Hilbert space w.r.t. 〈f1|f2〉 =
∫
f̄1(x)f2(x)dµ(x).

8. The following theorem allows us to construct measures on S ′R:

Theorem 2.1 (Bochner-Minlos) Let ZE : SR → C be a map satisfying

(a) (Continuity) ZE[Jn]→ ZE[J ] if Jn → J in SR

(b) (Positive definiteness) For any J1, . . . , JN ∈ S ′R, the matrix Ai,j :=
ZE[Ji − Jj] is positive. This means z†Az :=

∑
i,j z̄iAi,jzj ≥ 0 for any

z ∈ CN .

(c) (Normalisation) ZE[0] = 1.

Then there exists a unique Borel probability measure µ on S ′R s.t.

ZE[J ] =

∫
S′R

eiϕ(J)dµ(ϕ) (20)

ZE[f ] is called the characteristic function of µ or the (Euclidean) generating
functional of the moments of µ. Indeed, formally we have:

(−i)n δ

δJ(x1)
. . .

δ

δJ(xn)
ZE[J ]|J=0 =

∫
S′R

ϕ(x1) . . . ϕ(xn)dµ(ϕ), (21)

so the generating functional carries information about all the moments of
the measure (cf. (16) above).

9. Example: Let C = 1
−∆+m2 , where ∆ = ∂2

(∂x0)2 + · · · + ∂2

(∂x3)2 is the Laplace

operator on R4. For We consider the expectation value of C on f ∈ SR:

〈J |CJ〉 :=

∫
d4p

¯̂
J(p)

1

p2 +m2
Ĵ(p). (22)

and set ZE,C [J ] := e−
1
2
〈J |CJ〉. This map satisfies the assumptions of the

Bochner-Minlos theorem and gives a measure dµC on S ′R called the Gaussian
measure with covariance (propagator) C. In the physics notation:∫

F (ϕ)dµC(ϕ) =

∫
F (ϕ)

1

NC

e−
1
2

∫
d4xϕ(x)(−∆+m2)ϕ(x)D[ϕ]

=

∫
F (ϕ)

1

NC

e−
1
2

∫
d4x (∂µϕ(x)∂µϕ(x)+m2ϕ2(x))D[ϕ], (23)
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for any F ∈ L1(S ′R, dµC). Since we chose imaginary time, we have a Gaussian
damping factor and not an oscillating factor above. This is the main reason
to work in the Euclidean setting.

2.3 Osterwalder-Schrader axioms

Now we formulate conditions, which guarantee that a given measure µ on S ′R gives
rise to a Wightman theory:

Definition 2.2 We say that a Borel probability measure µ on S ′R defines an Osterwalder-
Schrader QFT if this measure, resp. its generating functional ZE : SR → C,
satisfies:

1. (Analyticity) The function CN 3 (z1, . . . , zN)→ ZE[
∑N

i=1 zjJj] ∈ C is entire
analytic for any J1, . . . Jn ∈ SR.

Gives existence of Schwinger functions.

2. (Regularity) For some 1 ≤ p ≤ 2, a constant c and all J ∈ SR, we have

|ZE[J ]| ≤ ec(‖J‖1+‖J‖pp). (24)

Gives temperedness of the Wightman field.

3. (Euclidean invariance) ZE[J ] = ZE[J(R,a)] for all J ∈ SR, where J(R,a)(x) =
f(R−1(x− a)), R ∈ SO(4), a ∈ R4.

Gives Poincaré covariance of the Wightman theory.

4. (Reflection positivity) Define:

• θ(x0, ~x) = (−x0, ~x) the Euclidian time reflection.

• Jθ(x) := J(θ−1x) = J(θx) for J ∈ SR.

• R4
+ = {(x0, ~x) |x0 > 0}

Reflection positivity requires that for functions J1, . . . , JN ∈ SR, supported in
R4

+, the matrix Mi,j := ZE[Ji − (Jj)θ] is positive.

Gives positivity of the scalar product in the Hilbert space H (i.e.
〈Ψ|Ψ〉 ≥ 0 for all Ψ ≥ 0). Also locality and spectrum condition.

5. (Ergodicity) Define:

• Js(x) = J(x0 − s, ~x) for J ∈ SR.

• (T (s)ϕ)(J) = ϕ(Js) for ϕ ∈ S ′R.

10



Ergodicity requires that for any function A ∈ L1(S ′R, dµ) and ϕ1 ∈ S ′R

lim
t→∞

1

t

∫ t

0

A(Tsϕ1)ds =

∫
S′R

A(ϕ)dµ(ϕ). (25)

Gives the uniqueness of the vacuum.

Theorem 2.3 Let µ be a measure on S ′R satisfying the Osterwalder-Schrader
axioms. Then the moment functions

GE,n(x1, . . . , xn) =

∫
S′R

ϕ(x1) . . . ϕ(xn)dµ(ϕ) (26)

exist and are Schwinger functions of a Wightman QFT.

Remark 2.4 The Gaussian measure dµC from the example above satisfies the
Osterwalder-Schrader axioms and gives the (scalar, Hermitian) free field.

Some ideas of the proof: The Hilbert space and the Hamiltonian of the Wightman
theory is constructed as follows:

• Def: E := L2(S ′R, dµ).

• Def: AJ(ϕ) := eiϕ(J) for any J ∈ SR and (θAJ)(ϕ) := eiϕ(Jθ).

• Fact: E = Span{AJ |J ∈ SR}

• Def: E+ = Span{AJ |J ∈ S(R4
+)R} where S(R4

+)R are real Schwartz-class
functions supported in R4

+.

• Fact: 〈A1|A2〉 :=
∫

(θA1)(ϕ)A2(ϕ)dµ(ϕ) is a bilinear form on E+, which is
positive (i.e. 〈A|A〉 ≥ 0) by reflection positivity. Due to the presence of θ it
differs from the the scalar product in E .

• Def: N = {A ∈ E+ | 〈A|A〉 = 0} and set H = (E+/N )cpl, where cpl denotes
completion. This H is the Hilbert space of the Wightman theory.

• T (t) : E+ → E+ for t ≥ 0. It gives rise to a semigroup e−tP0 : H → H with
a self-adjoint, positive generator P0 - the Hamiltonian. Thus eitP0 : H → H
gives unitary time-evolution.

2.4 Interacting measure

Interacting measures are usually constructed by perturbing the Gaussian measure
dµC . Reflection positivity severely restricts possible perturbations. Essentially,
one has to write:

dµI(ϕ) =
1

N
e−

∫
LE,I(ϕ(x))d4xdµC(ϕ), (27)

where N is the normalisation constant and LE,I : R → R some function (the
Euclidean interaction Lagrangian). For example LE,I(ϕ(x)) = λ

4!
ϕ(x)4. But this

leads to problems:
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• ϕ is a distribution so ϕ(x)4 in general does not makes sense.
This ultraviolet problem can sometimes be solved by renormalization.

• Integral over whole spacetime ill-defined. (But enforced by the translation
symmetry).

For φ4 theory in two-dimensional spacetime these problems were overcome and dµI
satisfying the Osterwalder-Schrader axioms was constructed. It was also shown
that the resulting theory is interacting, i.e. has non-trivial S-matrix. In the next
lecture we will discuss the S-matrix is in the Wightman setting.
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3 Scattering theory

The main reference for this section is [3, Chapter 16].

3.1 Setting

We consider a Wightman theory (H, U,Ω, φ,D). Recall the key properties

1. Covariance: U(Λ, a)φ(x)U(Λ, a)−1 = φ(Λx+ a),

2. Locality: [φ(x), φ(y)] = 0 for (x− y)2 < 0,

3. Cyclicity of Ω: Vectors of the form φ(f1) . . . φ(fm)Ω span a dense subspace
in H,

where smearing with test-functions from S in variables x, y is understood in prop-
erties 1. and 2. Furthermore U(a) = eiPµa

µ
and SpP ⊂ V̄+. Today we will impose

stronger assumptions on the spectrum:

A.1. The spectrum contains an isolated mass hyperboloid Hm i.e.

Hm ⊂ SpP ⊂ {0} ∪Hm ∪Gm̃, (28)

where Hm = { p ∈ R4 | p0 =
√
~p2 +m2 }, Gm̃ = { p ∈ R4 | p0 ≥

√
~p2 + m̃2 }

for m̃ > m. (In other words, the mass-operator
√
PµP µ has an isolated

eigenvalue m. Embedded eigenvalues can also be treated [13], but then
scattering theory is more difficult).

A.2. Define the single-particle subspace H(Hm) as the spectral subspace of Hm.
That is, H(Hm) = χ(P )H, where χ(P ) is the characteristic function of Hm

evaluated at P = (P0, P1, P2, P3). We assume that U restricted to H(Hm) is
an irreducible representation of P↑+. (One type of particles).

Theorem 3.1 (Källen-Lehmann representation). For a Wightman field φ with
〈Ω, φ(x)Ω〉 = 0 we have

〈Ω|φ(x)φ(y)Ω〉 =

∫
dρ(M2)∆+(x− y;M2), (29)

∆+(x− y;M2) := 〈0|φ(M)
0 (x)φ

(M)
0 (y)|0〉 =

∫
d3p

(2π)32p0
eip(y−x), (30)

where dρ(M2) is a measure on R+, p0 =
√
~p2 +M2, φ

(M)
0 is the free scalar field

of mass M and |0〉 is the vacuum vector in the Fock space of this free field theory,
whereas Ω is the vacuum of the (possibly interacting) Wightman theory. Further-
more, given the structure of the spectrum (28), we have

dρ(M2) = Zδ(M2 −m2)d(M2) + dρ̃(M2) (31)

where Z ≥ 0 and dρ̃ is supported in [m̃2,∞)
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We assume in the following that:

A.3. 〈Ω, φ(x)Ω〉 = 0. This is not a restriction, since a shift by a constant φ(x) 7→
φ(x) + c gives a new Wightman field.

A.4. Z 6= 0 to ensure that 〈Ψ1|φ(x)Ω〉 6= 0 for some single-particle vector Ψ1

(i.e. a vector living on Hm). This means that the particle is ‘elementary’
(as opposed to composite) and we do not need polynomials in the field to
create it from the vacuum. This assumption can be avoided at a cost of
complications.

3.2 Problem and strategy

Take two single-particle states Ψ1,Ψ2 ∈ H(Hm). We would like to construct
vectors Ψout,Ψin describing outgoing/ incoming configuration of these two single-
particle states Ψ1,Ψ2. Mathematically this problem consists in finding two ‘mul-
tiplications’

Ψout = Ψ1

out
× Ψ2, (32)

Ψin = Ψ1

in
×Ψ2, (33)

which have all the properties of the (symmetrised) tensor product but take values
in H (and not in H⊗H). After all, we know from quantum mechanics, that sym-
metrised tensor products describe configurations of two undistinguishable bosons.

The strategy is suggested by the standard Fock space theory: With the help of
the field φ we will construct certain ‘time-dependent creation operators’ t 7→ A†1,t,

t 7→ A†2,t s.t.

Ψ1 = lim
t→±∞

A†1,tΩ, Ψ2 = lim
t→±∞

A†2,tΩ. (34)

Then we can try to construct

Ψout = lim
t→∞

A†1,tA
†
2,tΩ, Ψin = lim

t→−∞
A†1,tA

†
2,tΩ. (35)

Of course analogous consideration applies to n-particle scattering states.

Plan of the remaining part of the lecture:

• Construction of A†t .

• Existence of limits in definitions of Ψout, Ψin.

• Wave-operators, S-matrix and the LSZ reduction formula.
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3.3 Definition of A†t

The operators A†t are defined in (41) below. In order to motivate this definition,
we state several facts about the free field. It should be kept in mind that we are
interested in the interacting field, and the following discussion of the free field is
merely a motivating digression.

Recall the definition of the free scalar field:

φ0(x) =

∫
d3p

(2π)32p0
(eipxa†(p) + e−ipxa(p)). (36)

(Here and in the following we reserve the letter p for momenta restricted to the
mass-shell i.e. p = (p0, ~p) = (

√
~p2 +m2, ~p). For other momenta I will use q).

There are two ways to extract a† out of φ0:

1. Use the formula from the lecture:

a†(p) = i

∫
d3xφ0(x)

↔
∂ 0e

−ipx (37)

Since a†(p) is not a well-defined operator (only an operator valued distribu-
tion) we will smear both sides of this equality with a test-function. For this
purpose we define for any f ∈ C∞0 (R4)

a†(f) :=

∫
d3p

(2π)32p0
a†(p)f(p), fm(x) =

∫
d3p

(2π)32p0
e−ipxf(p), (38)

where the latter is a positive-energy solution of the KG equation, that is
(� +m2)fm(x) = 0. We get

a†(f) = i

∫
d3xφ0(x)

↔
∂ 0fm(x). (39)

2. Pick a function h ∈ S s.t. supp ĥ is compact and supp ĥ∩SpP ⊂ Hm. Then

φ0(h) = (2π)2a†(ĥ), where ĥ(q) =
1

(2π)2

∫
eiqxh(x)d4x. (40)

Now we come back to our (possibly) interacting Wightman field φ and perform
both operations discussed above to obtain the ‘time dependent creation operator’

A†t := i

∫
d3xφ(h)(t, ~x)

↔
∂ 0fm(t, ~x), (41)

where φ(h)(t, ~x) := U(t, ~x)φ(h)U(t, ~x)† = φ(h(t,~x)).
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3.4 Construction of scattering states

Theorem 3.2 (Haag-Ruelle) For f1, . . . , fn with disjoint supports, the following
limits exist

Ψout
n = lim

t→∞
A†1,t . . . A

†
n,tΩ, (42)

Ψin
n = lim

t→−∞
A†1,t . . . A

†
n,tΩ (43)

and define outgoing/incoming scattering states.

Proof. For n = 1 the expression

A†1,tΩ = i

∫
d3x

(
φ(h)(t, ~x)Ω

)↔
∂ 0fm(t, ~x) (44)

is independent of t and thus limt±∞A
†
1,t(f1)Ω (trivially) exist. Moreover, it is a

single-particle state. Justification:

• x 7→ φ(h)(x)Ω is a solution of the KG equation. This can be shown using the

Källen-Lehmann representation and the support property of ĥ to eliminate
the contribution from dρ̃. Assumption A.1. enters here. (Howework).

• For any two solutions g1, g2 of the KG equation
∫
d3x g1(t, ~x)

↔
∂ 0g2(t, ~x) is

independent of t.

• We have i[Pµ, φ(h)(x)] = ( ∂
∂xµ

)φ(h)(x). Since PµΩ = 0, we can write

P 2φ(h)(x)Ω = PµP
µφ(h)(x)Ω = −i[Pµ, i[P µ, φ(h)(x)]]Ω

= −�xφ(h)(x)Ω = m2φ(h)(x)Ω, (45)

where in the last step we used the first item above. Hence φ(h)(x)Ω are
single-particle states of mass m.

For n = 2 we set Ψt := A†1,tA
†
2,tΩ and try to verify the Cauchy criterion:

‖Ψt2 −Ψt1‖ = ‖
∫ t2

t1

∂τΨτdτ‖ ≤
∫ t2

t1

‖∂τΨτ‖dτ. (46)

If we manage to show that ‖∂τΨτ‖ ≤ c/τ 1+η for some η > 0 then the Cauchy
criterion will be satisfied as we will have

‖Ψt2 −Ψt1‖ ≤ c

∣∣∣∣ 1

tη1
− 1

tη2

∣∣∣∣. (47)

(Note that we use the completeness of H here i.e. the property that any Cauchy
sequence converges).
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Thus we study ∂τΨτ . The Leibniz rule gives

∂τΨτ = (∂τA
†
1,τ )A

†
2,τΩ + A†1,τ (∂τA

†
2,τ )Ω

= [(∂τA
†
1,τ ), A

†
2,τ ]Ω + A†2,τ (∂τA

†
1,τ )Ω + A†1,τ (∂τA

†
2,τ )Ω. (48)

Since (∂τA
†
i,τ )Ω = 0 by the first part of the proof, only the term with the com-

mutator above is non-zero. To analyze it, we need some information about KG
wave-packets:

• Def. For the KG wave-packet fi,m we define the velocity support as

Vi =

{
~p

p0
| p ∈ suppfi

}
(49)

and let V δ
i be slightly larger sets.

• Fact. For any N ∈ N we can find a cN s.t.

|fi,m(τ, ~x)| ≤ cN
τN

for
~x

τ
/∈ V δ

i . (50)

Due to (50), the contributions to ‖[(∂τA†1,τ ), A
†
2,τ ]Ω‖ coming from the part of the

integration region in (41) where ~x
τ
/∈ V δ

i , are rapidly vanishing with τ . So we only
have to worry about the dominant parts:

A
†(D)
i,t := i

∫
~x
t
∈V δi

d3xφ(h)(t, ~x)
↔
∂ 0fi,m(t, ~x). (51)

Since V δ
1 , V

δ
2 are disjoint, the Wightman axiom of locality gives for sufficiently

large τ .

‖[(∂τA†(D)
1,τ ), A

†(D)
2,τ ]Ω‖ ≤ cN

τN
. (52)

This concludes the proof. �

3.5 Wave operators, scattering matrix, LSZ reduction

In the following we choose h s.t. ĥ(p)f(p) = (2π)−2Z−1/2f(p). This can be done,
since f has compact support. After this fine-tuning, exploiting assumptions A.2,
A.3, A.4 one obtains the following simple formula for scalar products of scattering
states:

Theorem 3.3 (Haag-Ruelle) Let Ψout
n , (Ψ′n′)

out be as in the previous theorem.
Then their scalar products can be computed as if these were vectors on the Fock
space:

〈Ψout
n |(Ψ′n′)out〉 = 〈0|a(fn) . . . a(f1)a†(f ′1) . . . a†(f ′n′)|0〉 (53)

and analogously for incoming states.
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Let F be the symmetric Fock space. (This is not the Hilbert space of our Wightman
theory, but merely an auxiliary object needed to define the wave-operators). We
define the outgoing wave-operator W out : F → H as

W out(a†(f1) . . . a†(fn)|0〉) = lim
t→∞

A†1,t . . . A
†
n,tΩ. (54)

By Theorem 3.3 it is an isometry i.e. (W out)†W out = I. If it is also a unitary
i.e. RanW out = H then we say that the theory is asymptotically complete that
is every vector in H can be interpreted as a collection of particles from H(Hm).
This property does not follow from Wightman axioms (there are counterexamples)
and it is actually not always expected on physical grounds. For a more thorough
discussion of asymptotic completeness we refer to [12].

The incoming wave-operator W in : F → H is defined by taking the limit
t→ −∞ in (54). The scattering matrix Ŝ : F → F is given by1

Ŝ = (W out)†W in. (55)

If Ŝ 6= I we say that a theory is interacting. If RanW out = RanW in, then Ŝ is a
unitary (even without asymptotic completeness).

Corollary 3.4 (LSZ reduction) [8] For f1, . . . , f`, g1, . . . gn ∈ S with mutually dis-
joint supports, we have

〈0|a(f1) . . . a(f`)Ŝa
†(g1) . . . a†(gn)|0〉 =

∫
d3k1

(2π)32k0
1

. . .
d3pn

(2π)32p0
n

f1(k1) . . . gn(pn)×

× (−i)n+`

(
√
Z)n+`

∏̀
i=1

(k2
i −m2)

n∏
j=1

(p2
j −m2)×

×
∫
d4x1 . . . d

4x`d
4y1 . . . d

4yn e
i
∑`
i=1 kixi−i

∑n
j=1 pjyj×

×〈Ω|T (φ(x`) . . . φ(x1)φ(y1) . . . φ(yn))Ω〉,

where T is the time-ordered product (which needs to be regularized in the Wightman
setting).

By analytic continuation one can relate the Green functions to Schwinger functions.
The latter can be studied using path integrals as explained in the previous lecture.
This led to a proof that for φ4 in 2-dimensional spacetime Ŝ 6= I [9]. It is a
big open problem if there is a Wightman theory in 4-dimensional spacetime with
Ŝ 6= I.

1The notation Ŝ is used to avoid confusion with the Schwartz class S.
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4 Renormalization

Main references for this section are [10,11].

4.1 Introductory remarks

Consider a Wightman theory (H, U,Ω, φB, D) as in the previous lecture and sup-
pose we want to describe a collision of several particles: The LSZ formula gives:

〈0|a(k1) . . . a(k`)Ŝa
†(p1) . . . a†(pn)|0〉 =

(−i)n+`

(
√
Z)n+`

∏̀
i=1

(k2
i −m2)

n∏
j=1

(p2
j −m2)×

×
∫
d4x1 . . . d

4x`d
4y1 . . . d

4yn e
i
∑`
i=1 kixi−i

∑n
j=1 pjyj×

×〈Ω|T (φB(x`) . . . φB(x1)φB(y1) . . . φB(yn))Ω〉,

The ‘renormalized’ field φ := Z−1/2φB is again a Wightman field. To compute the
S-matrix of (H, U,Ω, φ,D) we drop Z and the index B on the r.h.s. of the formula
above.

Possibly after regularizing the time-ordered product, we can express the Green
functions of φ above by the Wightman functions and then analytically continue to
Schwinger functions GE,n. If the theory satisfies also Osterwalder-Schrader axioms,
we have

GE,n(x1, . . . , xn) =
δ

δJ(x1)
. . .

δ

δJ(xn)
ZE[J ]|J=0, ZE[J ] =

∫
S′R

eϕ(J)dµ(ϕ), (56)

for some Borel measure dµ and J ∈ SR. (We changed eiϕ(J) to eϕ(J), where J ∈ SR,
making use of the Osterwalder-Schrader axiom of analyticity).

Today we will attempt to construct this measure in λφ4 theory. This endeavor
will not be completely successful. In the end we will obtain GE,n as power series
in the coupling constant λ whose convergence we will not control. Thereby we will
abandon the Wightman/Osterwalder-Schrader setting and delve into perturbative
QFT. Strictly speaking, we will also abandon the realm of quantum theories, as
there will be no underlying Hilbert space and thus no control that transition prob-
abilities of physical processes take values between zero and one. On the positive
side, the finiteness of individual terms in this expansion will be an interesting
problem in the theory of differential equations.

4.2 From action to generating functional

Consider the Euclidean action written in terms of the bare (unphysical) quantities:

SE[ϕB] =

∫
d4x
(1

2
∂µϕB∂

µϕB +
1

2
m2
Bϕ

2
B +

λB
4!
ϕ4
B

)
. (57)
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Introduce the physical parameters via ϕB =
√
Zϕ, mB = Zmm, λB = Zλλ. This

gives

SE[ϕ] =

∫
d4x

1

2

(
∂µϕ∂

µϕ+m2ϕ2
)

+

∫
d4x
{1

2
(Z − 1)∂µϕ∂

µϕ+
1

2
(Z2

mZ − 1)m2ϕ2 +
ZλZ

2

4!
λϕ4

}
= SE,0[ϕ] + SE,I [ϕ]. (58)

Let us start with the free action SE,0. The corresponding generating functional is

ZE,0[J ] = e
1
2

∫
d4p Ĵ(p)C(p)Ĵ(p) =

∫
S′R

eϕ(J)dµC(ϕ), (59)

dµC(ϕ) = ”
1

NC

e−SE,0[ϕ]D[ϕ]”, (60)

where C(p) = 1
p2+m2 and dµC is the corresponding Gaussian measure given formally

by (60). The candidate generating functional for the interacting theory is

Zcand
E [J ] =

1

N

∫
S′R

eϕ(J)e−SE,I [ϕ]dµC(ϕ), (61)

where N is chosen so that Zcand
E [0] = 1. Problems:

• dµC is supported on distributions so ϕ(x)4 appearing in SE,I [ϕ] is ill-defined
(UV problem).

• Integral over spacetime volume in SE,I [ϕ] ill-defined (IR problem).

4.3 Regularized generating functional

To make sense out of (61) we need regularization: We set

CΛ0
Λ (p) :=

1

p2 +m2
(e
− p

2+m2

Λ2
0 − e−

p2+m2

Λ2 ). (62)

Here Λ0 is the actual UV cut-off. 0 ≤ Λ ≤ Λ0 is an auxiliary cut-off which will be
needed for technical reasons. Thus CΛ0

Λ is essentially supported in Λ ≤ p2 ≤ Λ0.

Lemma 4.1 dµ
C

Λ0
Λ

is supported on smooth functions.

Thus the following regularized generating functional is meaningful

ZΛ,Λ0

E [J ] =
1

N

∫
eϕ(J)e−S

Λ0
E,I,(V )

[ϕ]dµ
C

Λ0
Λ

(ϕ), (63)

where we also introduced a finite volume V . Of course, when we try to take the
limit Λ0 →∞, we will get back divergent expressions. The idea of renormalization
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is to absorb these divergencies into the parameters in SΛ0

E,I,(V ) (therefore we added

a superscript Λ0). For simplicity, we rename the coefficients from (58) as follows:

SΛ0

E,I,(V )[ϕ] =

∫
V

d4x
(
aΛ0∂µϕ∂

µϕ+ bΛ0ϕ2 + cΛ0λϕ4
)
. (64)

We list the following facts:

• ZΛ,Λ0

E generates (regularized) Schwinger functions GΛ,Λ0

E,n .

• − log (NZΛ,Λ0

E ) generates (regularized) connected Schwinger functions GΛ,Λ0

E,c,n.

• ΣΛ,Λ0 [J ] := − log (NZΛ,Λ0

E [(CΛ0
Λ )−1J ]) + 1

2
〈J |(CΛ0

Λ )−1J〉 generates (regular-
ized) connected amputated Schwinger functions with subtracted zero-order
contribution GΛ,Λ0

E,r≥1,a,c,n.

Given energy-momentum conservation, it is convenient to set

SΛ,Λ0
n (p1, . . . , pn−1)(2π)4δ(p1 + · · ·+ pn)

:=

∫
ei(p1x1+···+pnxn)GΛ,Λ0

E,r≥1,a,c,n(x1, . . . , xn)d4x1 . . . d
4xn.(65)

4.4 The problem of perturbative renormalizability

The renormalization of φ4 in 4 dimensions is only understood perturbatively. This
means we treat SΛ,Λ0

n as a formal power series

SΛ,Λ0
n =

∑
r≥1

λrSΛ,Λ0
r,n , (66)

i.e. a series whose convergence we do not control. (Order by order the limit
V → R4 can be taken, so we will not discuss it anymore). Similarly, we treat the
coefficients from the interaction Lagrangian as formal power series:

aΛ0 =
∑
r≥1

λraΛ0
r , bΛ0 =

∑
r≥1

λrbΛ0
r , cΛ0 =

∑
r≥1

λrcΛ0
r . (67)

Furthermore, we impose the following BPHZ renormalization conditions (RC)

S0,Λ0

r,4 (0) = δr,1, S0,Λ0

r,2 (0) = 0, ∂p2S0,Λ0

r,2 (0) = 0, (68)

which fix the physical values of the parameters2.

Theorem 4.2 (Perturbative renormalizability) There are such {aΛ0
r , b

Λ0
r , c

Λ0
r }Λ0≥0

that the limits

Sr,n(p) := lim
Λ0→∞

S0,Λ0
r,n (p), p = (p1, . . . , pn−1) (69)

exist and are finite, and the renormalisation conditions (68) hold.

2The physical meaning of our RC is not so direct, since we are in the Euclidean setting.
Before substituting our n-point functions to the LSZ formula for the S-matrix, they have to be
analytically continued to the real time and transferred to the on-shell renormalization scheme.
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Example: Consider the leading contribution to the two-point and four-point func-
tion:

S0,Λ0

1,2 (p) = ......O......+ ......x......

= 12cΛ0
1

∫
d4q

(2π)4
CΛ0

0 (q) + 2(aΛ0
1 p2 + bΛ0

1 ),

= 12cΛ0
1

∫
d4q

(2π)4

1

q2 +m2
e
− (q2+m2)

Λ2
0︸ ︷︷ ︸

IΛ0

+2(aΛ0
1 p2 + bΛ0

1 ), (70)

S0,Λ0

1,4 (p1, p2, p3) = 4!cΛ0
1 . (71)

For any finite Λ0 the integral above is convergent, but it diverges for Λ0 → ∞.
We have to choose the behavior of aΛ0

1 , bΛ0
1 , cΛ0

1 s.t. this divergence is compensated
and the RC are satisfied. We get from the three RC conditions, respectively,

4!cΛ0
1 = 1, 12cΛ0

1 IΛ0 + 2bΛ0
1 = 0, 2aΛ0

1 = 0. (72)

Hence, cΛ0
1 = 1/4!, bΛ0

1 = −(1/4)IΛ0 , aΛ0
1 = 0 and thus bΛ0

1 absorbs the divergence
of the integral IΛ0 .

4.5 Flow equations

Properties of ΣΛ,Λ0 [J ] := − log (NZΛ,Λ0

E [(CΛ0
Λ )−1J ]) + 1

2
〈J |(CΛ0

Λ )−1J〉:

• e−ΣΛ,Λ0 [J ] =
∫
dµ

C
Λ0
Λ

(ϕ)e−S
Λ0
E,I [J+ϕ].

• limΛ→Λ0 ΣΛ,Λ0 [J ] = SΛ0
E,I [J ] since limΛ→Λ0 C

Λ0
Λ (p) = 0 and therefore, formally,

limΛ→Λ0 dµCΛ0
Λ

(ϕ) = δ(ϕ)D[ϕ].

• ∂Λ(e−ΣΛ,Λ0 [J ]) = 1
2
〈 δ
δJ
|∂ΛC

Λ0
Λ

δ
δJ
〉e−ΣΛ,Λ0 [J ].

This gives the following equation for SΛ,Λ0
r,n (p) := SΛ,Λ0

r,n (p1, . . . , pn−1)

∂ΛS
Λ,Λ0
r,n (p) =

1

2

∫
d4p

(2π)4
(∂ΛC

Λ0
Λ )(p)SΛ,Λ0

r,n+2(p1, . . . , pn−1, p,−p)

− 1

2

∑
r′+r′′=r

n′+n′′=n+2

(
n

n′ − 1

)
[SΛ,Λ0

r′,n′ (p1, . . . , pn′−1)(∂ΛC
Λ0
Λ )(q)SΛ,Λ0

r′′,n′′(−q, pn′ , . . . , pn−1)]sym,

(73)

where q = −p1 − · · · − pn′−1 and sym denotes the symmetrisation in p1, . . . , pn−1.
Boundary conditions:

(a) Λ = 0 : S0,Λ0

r,4 (0) = δr,1, S0,Λ0

r,2 (0) = 0, ∂p2S0,Λ0

r,2 (0) = 0 (RC).
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(b) Λ = Λ0 : ∂wSΛ0,Λ0
r,n (p) = 0 for n+ |w| ≥ 5. (By second bullet above).

With the help of the above equation one proves the following theorem:

Theorem 4.3 The following estimate holds

|∂wSΛ,Λ0
r,n (p)| ≤

{
P1(|p|) for 0 ≤ Λ ≤ 1,

Λ4−n−wP2(log Λ)P3

( |p|
Λ

)
for 1 ≤ Λ ≤ Λ0

,

where Pi are some polynomials independent of p,Λ,Λ0, but depending on n, r, w.

In particular this shows that SΛ,Λ0
r,n (p) stays bounded if Λ = 0 and Λ0 →∞. With

more effort, one also shows convergence as Λ0 → ∞, required by the renormaliz-
ability property (69).

4.6 Outline of the proof of Theorem 4.3

Observation3:

SΛ,Λ0
r,n ≡ 0 for n > 2r + 2. (74)

Given this, the structure of the flow equation suggests the inductive scheme as in
the figure: Indeed, we can start the induction in the region where (74) holds and
therefore the estimate from Theorem 4.3 is satisfied. We suppose the estimate
holds for

3Indeed, without assuming connectedness we clearly have vanishing of these functions for
n > 4r. Now (r − 2) verticies need to use at least two lines to keep the diagram connected. 2
verticies need to spend only one line. So altogether n > 4r − 2(r − 2)− 2.
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• (r, n1) for n1 ≥ n+ 2.

• (r2, n2) for r2 < r and any n2.

Since only SΛ,Λ0

r′,n′ as listed above appear on the r.h.s. of the flow equation (73),
we can apply the estimate to this r.h.s. Then (after quite some work) the flow
equation gives the required estimate on the SΛ,Λ0

r,n , which appears on the l.h.s. of
the flow equation (73).
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5 Symmetries I

Symmetries in physics are described by groups. We recall some definitions and
facts from the theory of groups and their representations following [14, Chapter
1], [15, Chapter 1], [16].

5.1 Groups

1. Def. A group is a set G with an operation · : G×G→ G s.t.

• (g1 · g2) · g3 = g1 · (g2 · g3) for all g1, g2, g3 ∈ G,

• There exists e ∈ G s.t. g · e = e · g = g for all g ∈ G,

• For any g ∈ G there exists g−1 ∈ G s.t. g · g−1 = e.

2. Examples:

• Z2 = {1,−1} is the group of parity transformations.

• Let V be a vector space over the field K (R or C). Then GL(V ) denotes
the group of all invertible linear mappings V → V .

• For V = Kn we write GL(n,K) := GL(V ). This is the group of invert-
ible n× n matrices with entries in K.

• SO(3) = {R ∈ GL(3,R) |RTR = I, detR = 1} - the group of rota-
tions.

• SU(2) = {U ∈ GL(2,C) |U †U = I, detU = 1 } - special unitary group.

3. Let G, Ĝ be groups. Then H : G→ Ĝ is a group homomorphism if

H(g1g2) = H(g1)H(g2) for any g1, g2 ∈ G. (75)

If H is in addition a bijection then it is called an isomorphism.
(For Lie groups, which we discuss below, homomorphisms are required to be
smooth and isomorphisms should also have smooth inverse).

5.2 Lie groups

1. Def. G is a Lie group if it is a smooth real manifold and the group operation
and taking the inverse are smooth maps. The dimension ofG is the dimension
of this manifold.

2. Def. A set M is an n-dimensional smooth manifold if the following hold:

• It is a Hausdorff topological space. (Distinct points have non-overlapping
neighbourhoods, unique limits).

• There is an open cover i.e. a family of open sets Uα ⊂ M, α ∈ I, s.t.⋃
α∈I Uα = M .
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• There is an atlas A(M) := { ηα : Uα → Oα |α ∈ I } given by some fam-
ily of open sets Oα ⊂ Rn and charts ηα, which are homeomorphisms.
(A homeomorphism is a continuous bijection whose inverse is also con-
tinuous).

• Let Oα,β := ηβ(Uα ∩ Uβ) ⊂ Rn and let Oβ,α = ηα(Uα ∩ Uβ) ⊂ Rn. Then
ηα ◦ η−1

β : Oα,β → Oβ,α is smooth.

3. Def. A map F : M → M̂ between two manifolds is smooth if all the maps
η̂β ◦ F ◦ η−1

α : Oα → Ôβ are smooth whenever well-defined. It is called a
diffeomorphism if it is a bijection and the inverse is also smooth. We denote
by C∞(M) the space of smooth maps M → R.

4. Def. A smooth map R ×M 3 (t, x) 7→ γt(x) ∈ M , is called a flow (of a
vector field) if

γ0 = idM , γs ◦ γt = γs+t for t, s ∈ R. (76)

5. Def. A vector field X : C∞(M)→ C∞(M) with the flow γ is given by

X(f) =
d

dt
f ◦ γt|t=0, f ∈ C∞(M). (77)

6. Fact. Given two vector fields X, Y , the commutator [X, Y ](f) := X(Y (f))−
Y (X(f)) is again a vector field.

7. Def. A tangent vector at point x ∈ M is a map Xx : C∞(M)→ R given by
Xx(f) = d

dt
f ◦ γt(x)|t=0. We denote by TxM the space of all tangent vectors

at x (for different flows).
Example: Let M = Rn and γt = (γ1

t , . . . , γ
n
t ) be a flow. Then

Xx(f) =
n∑
i=1

d

dt
γit(x)|t=0

∂f

∂xi
(x). (78)

If one ‘forgets’ f and thinks about ∂
∂xi

as basis vectors then the expression
Xx =

∑n
i=1

d
dt
γit(x)|t=0

∂
∂xi

is clearly the tangent vector to t→ γt(x) at x.

8. Def. (Transport of a vector field) Let F : M → M̂ be a diffeomorphism and
X a vector field on M given by a flow {γt}t∈R. Then F∗X is a vector field
on M̂ given by F ◦ γt ◦ F−1. That is

(F∗X)(f̂) =
d

dt
f̂ ◦ F ◦ γt ◦ F−1|t=0, f̂ ∈ C∞(M̂). (79)

9. Now we can introduce the Lie algebra G′ of a Lie group G.

• Def. Let G be a Lie group and g ∈ G. Then, the left-multiplication
Lg : G→ G, acting by Lgg̃ = gg̃ is a diffeomorphism.
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• Def. We say that a vector field X on G is left-invariant if ((Lg)∗X) = X
for any g ∈ G.

• Fact. If X, Y are left-invariant, then also [X, Y ] is left-invariant.

• Def. The Lie algebra G′ of G is the vector space of left-invariant vector
fields on G with algebraic operation given by the commutator.

10. Def. For X ∈ G′ we set exp(X) := γ1(e).

11. Fact. This exponential map is a diffeomorphism of a neighbourhood of zero
in G′ into a neighbourhood of e in G.

5.3 From multiplication law in G to algebraic operation
in G′

1. Fact. Left-invariance and (79) give Xg(f) = Xe(f ◦ Lg) for any g ∈ G.
Thus left-invariant vector fields are determined by their values at the neutral
element e. In this sense, G′ can be identified with TeG and has the same
dimension as G.

2. Let us choose a basis X1, . . . , Xn in G′. We have

[XA, XB]e =
n∑

C=1

fCABXC
e , (80)

where fCAB are called the structure constants. In physics one usually defines
the infinitesimal generators4 tA := iXA and writes (80) as

[tA, tB] =
n∑

C=1

ifCABtC , (81)

where evaluation at e is understood. We follow the mathematics convention
below, unless stated otherwise.

3. Let us determine fCAB from the multiplication law of the group G. We
work in some chart η : U → O ⊂ Rn whose domain U is a neighbourhood
of e, in which the group elements have the form g = η−1(ε1, . . . , εn), e =
η−1(0, . . . , 0). For ε1, ε2 ∈ O, i.e. εi = (ε1

i , . . . , ε
n
i ), i = 1, 2, we define the

multiplication function

m(ε1, ε2) := η(η−1(ε1)η−1(ε2)) (82)

4As we defined G′ as a real vector space, it may be unclear what the multiplication by ‘i’
means. We recall that is it always possible to ‘complexify’ a real vector space. Furthermore, in
the later part of these lectures we will represent Lie algebras on complex vector spaces. Then ‘i’
will be provided by the vector space.
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which takes values in O i.e. m(ε1, ε2) = (m1(ε1, ε2), . . . ,mn(ε1, ε2)). Since
η−1(0) = e, we have m(ε1, 0) = ε1 and m(0, ε2) = ε2. Consequently

∂mi

∂εj1
(0, 0) =

∂mi

∂εj2
(0, 0) = δi,j. (83)

Given a flow of a vector field γt in G we define the transported flow γ̃t(ε) =
η ◦ γt ◦ η−1(ε) = (γ̃1

t (ε), . . . , γ̃
n
t (ε)).

Lemma 5.1 Let X1, . . . , XA . . . , Xn be vector fields on G whose flows sat-
isfy

d

dt
γ̃iA,t(ε)|t=0 =

∂mi

∂εA2
(ε, 0). (84)

Then these fields are left-invariant. Furthermore, they are linearly indepen-
dent near e and thus span the Lie algebra.

Proof. We want to verify XA
g (f) = XA

e (f ◦ Lg) for f ∈ C∞(M) and

g = η−1(ε). Thus we set f̃ := f ◦ η−1 and compute

XA
η−1(ε)(f) =

d

dt
f(γA,t ◦ η−1(ε))|t=0 =

d

dt
f̃(γ̃A,t(ε))|t=0

=
n∑
i=1

d

dt
(γ̃iA,t(ε))|t=0

∂f̃

∂εi
(ε) =

n∑
i=1

∂mi

∂εA2
(ε, 0)

∂f̃

∂εi
(ε). (85)

On the other hand

XA
η−1(0)(f ◦ Lη−1(ε)) =

d

dt
f(Lη−1(ε)γA,t ◦ η−1(0))|t=0

=
d

dt
f(η−1(ε)η−1(γ̃A,t(0)))|t=0 =

d

dt
f̃(m(ε, γ̃A,t(0)))|t=0

=
∑
i,k

∂f̃

∂εi
(ε)

∂mi

∂εk2
(ε, 0)

d

dt
γ̃kA,t(0)|t=0︸ ︷︷ ︸

δk,A by (83),(84).

, (86)

which concludes the proof of left-invariance. It suffices to check linear inde-
pendence near e which follows from (85) and (83). �

Lemma 5.2 Under the assumptions of the previous lemma, we have

[XA, XB]e =
n∑

C=1

fCABXC
e , (87)

with fCAB = ∂2mC

∂εA1 ∂ε
B
2

(0, 0)− ∂2mC

∂εB1 ∂ε
A
2

(0, 0). (Homework).
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5.4 Abstract Lie algebras

1. Def. A Lie algebra is a vector space g over the field R together with a bilinear
form [ · , · ] : g× g→ g which satisfies

• Antisymmetry: [X, Y ] = −[Y,X] for all X, Y ∈ g.

• Jacobi identity: [X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]] for all X, Y, Z ∈ g.

2. Examples:

• Let V be a vector space over a field K. Then gl(V ) denotes the Lie
algebra of all linear mappings V → V with [X, Y ] = X ◦ Y − Y ◦X.

• For V = Kn we write gl(n,K) := gl(V ). This is the Lie algebra of all
n× n matrices with entries in K.

• so(3) = {X ∈ gl(3,R) |XT = −X } is the Lie algebra of rotations.

• su(2) = {X ∈ gl(2,C) |X† = −X, Tr(X) = 0 }.

3. Def. Let g, h be Lie algebras. A linear map h : g → h is a Lie algebra
homomorphism if h([X, Y ]) = [h(X), h(Y )]. If h is a bijection, it is called an
isomorphism.

4. For example, so(3) and su(2) are isomorphic Lie algebras.

5. Thm. If g is a finite-dimensional Lie algebra then there is a unique, up to
isomorphism, simply-connected Lie group G s.t. G′ = g.
(Recall that a topological space is simply connected if any loop can be con-
tinuously contracted to a point).

6. Fact: If H : G 7→ Ĝ is a Lie group homomorphism then

h(X) =
d

dt
H(exp(tX))|t=0, X ∈ G′ (88)

is a Lie algebra homomorphism. Furthermore H(exp(tX)) = exp(th(X)) for
all t ∈ R.

7. Thm. Let G, Ĝ be Lie groups and suppose G is simply-connected. Then
a Lie algebra homomorphism h : G′ → Ĝ′ can be lifted to a Lie group
homomorphism H.

5.5 Matrix Lie groups

1. Def. A closed subgroup ofGL(n,K) is called a matrix Lie group. For example
SO(3) and SU(2).

2. Fact: Let G be a matrix Lie group. The Lie algebra G′ of this Lie group is
given by

G′ = {X ∈ gl(n,K) | etX ∈ G for all t ∈ R }. (89)
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We have GL(n,K)′ = gl(n,K), SO(3)′ = so(3), SU(2)′ = su(2). Further-
more, abstract exp : G′ → G coincide with the exponential function of a
matrix.

3. Recall that so(3) and su(2) are isomorphic Lie algebras. However SO(3)
and SU(2) are not isomorphic Lie groups. In particular, SU(2) is simply
connected, SO(3) is not.
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6 Symmetries II

6.1 Representations

1. Def. A group homomorphism D : G→ GL(V ) is called a representation.

2. Let D1 : G→ GL(V1) and D2 : G→ GL(V2) be two reps of G.

• Def: The direct sum of D1, D2, acting on V1 ⊕ V2 is defined by:

(D1 ⊕D2)(g)(v1 ⊕ v2) = (D1(g)v1)⊕ (D2(g)v2). (90)

• Def: The tensor product of D1, D2 acting on V1 ⊗ V2 is defined by

(D1 ⊗D2)(g)(v1 ⊗ v2) = (D1(g)v1)⊗ (D2(g)v2). (91)

3. The property of irreducibility of a representation D can be explained as
follows:

• Def. We say that a subspace W ⊂ V is invariant, if D(g)w ∈ W for
any g ∈ G and w ∈ W ,

• Def. We say that a representation is irreducible if it has no invariant
subspaces except for {0} and V .

• Def. A representation is completely reducible if it is a direct sum of
irreducible representations.

• Fact. (Schur Lemma). Let D : G→ GL(V ) be an irreducible represen-
tation and V complex. If A ∈ GL(V ) commutes with all D(g), g ∈ G,
then it has the form A = λI, λ ∈ C.

4. Def: A Lie algebra homomorphism d : g→ gl(V ) is called a representation.
Irreducibility and complete reducibility of such representations are defined
analogously as for groups.

5. Thm. Let D : G→ GL(V ) be a representation of a Lie group. Then

d(X) =
d

dt
D(exp(tX))|t=0, for X ∈ G′ (92)

defines a representation of G′.

6. Thm. Let G be a simply-connected Lie group and G′ its Lie algebra. Let
d : G′ → gl(V ) be a representation. Then there exists a unique representa-
tion D : G→ GL(V ) s.t. (92) holds.

7. Def. LetG be a matrix Lie group. We say that a bilinear form b : G′×G′ → R
is invariant, if b(gXg−1, gY g−1) = b(X, Y ) for all g ∈ G, X, Y ∈ G′.
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8. Fact. Let d : G′ → gl(V ) be a representation, b an invariant bilinear form
on G′ and {X1, . . . , Xn} a basis in G′. Then the Casimir operator

C :=
∑
A,B

b(XA, XB)d(XA)d(XB) (93)

is basis-independent and commutes with all d(X), X ∈ G′. Thus, by the
Schur Lemma, it is a multiple of unity in any irreducible representation on
complex V .

6.2 Projective representations

1. Let V by a complex vector space.

• Def: U(1) = {eiϕI |ϕ ∈ R } ⊂ GL(V ).

• Def: GL(V )/U(1) is the (Lie) group generated by the equivalence
classes A = {eiϕA |ϕ ∈ R}.
• Def: A homomorphism D : G → GL(V )/U(1) is called a projective

representation (a representation up to a phase).

• For equivalence classes we have D(g1)D(g2) = D(g1g2). But for a given
choice of representatives D(g) ∈ D(g), (s.t. D(e) = I, g → D(g)
continuous)

D(g1)D(g2) = eiϕ(g1,g2)D(g1g2). (94)

for some function ϕ : G×G→ R.

2. D gives rise to the homomorphism d : G′ → (GL(V )/U(1))′ given by

d(X) =
d

dt
D(exp(tX))|t=0, X ∈ G′. (95)

3. We have (GL(V )/U(1))′ = (GL(V )′/U(1)′) = gl(V )/(iR). The elements of
this Lie algebra are the equivalence classes Y = {Y + iz |z ∈ R}.

4. For equivalence classes we have [d(XA), d(XB)] =
∑

C f
CABd(XC). But for

any given choice of representatives d(XA) ∈ d(XA)

[d(XA), d(XB)] =
∑
C

fCABd(XC)− izA,BI, (96)

where zA,B are called the central charges and the (-) sign in the last formula is
a matter of convention. In the physical notation one defines the infinitesimal
generators TA = id(XA) so that (96) reads

[TA, TB] =
∑
C

ifCABTC + izA,BI. (97)

We follow the mathematical convection below unless stated otherwise.
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• In some cases it is possible to eliminate zA,B by passing to different
representatives d̃(XA) = d(XA) + icA.

• Then d̃ becomes a Lie algebra representation G′ → gl(V ).

• Hence, by a theorem above, d̃ can be lifted to a Lie group representation
D̃ : G̃ → GL(V ), where G̃ is the unique simply-connected Lie group
with the Lie algebra G′. (The universal covering group).

5. Let us explain in more detail the concept of the covering space/group:

• Def. A topological space G is path connected, if for any g1, g2 ∈ G there
is a continuous map γ : [0, 1]→ G s.t. γ(0) = g1, γ(1) = g2.

• Def. A topological space G is simply connected, if it is path connected
and every loop in the space can be continuously contracted to a point.

• Def. The universal cover of a connected topological space G is a simply-
connected space G̃ together with a covering map Hc : G̃ → G. The
covering map is a local homeomorphism s.t. the cardinal number of
H−1
c (g) is independent of g. The universal cover is unique.

• Fact: If G is a Lie group, G̃ is also a Lie group and Hc : G̃ → G is a
homomorphism s.t. ker Hc is a discrete subgroup.

6. The situation above occurs in particular for projective unitary representa-
tions of SO(3).

• One can choose D s.t. eiϕ(g1,g2) ∈ {±1}. By continuity, eiϕ(g1,g2) = 1 for
g1, g2 close to e, hence zA,B = 0.

• Thus D can be lifted to a unitary representation D̃ of S̃O(3) = SU(2).

More precisely, D̃(A) = D(Hc(A)), whereA ∈ SU(2) andHc : SU(2)→
SO(3) is the covering homomorphism.

• kerHc := H−1
c (e) = Z2 thus SU(2)/Z2 ' SO(3) and every element of

SO(3) corresponds to two elements in SU(2). That is SU(2) is a double
covering of SO(3).

6.3 Representations of rotations

1. Fact: so(3) = {X ∈ gl(3,R) |XT = −X } is the Lie algebra of SO(3) =
{R ∈ GL(3,R) |RTR = I, detR = 1}. Indeed, let X ∈ so(3). Then

(etX)T etX = etX
T

etX = e−tXetX = 1 (98)

det(etX) = etTrX = 1, (99)

where we used that a real anti-symmetric metric has vanishing diagonal
elements and consequently is traceless.

33



2. We choose a basis in so(3) as follows

L1 =

0 0 0
0 0 −1
0 1 0

 , L2 =

 0 0 1
0 0 0
−1 0 0

 , L3 =

0 −1 0
1 0 0
0 0 0

 , (100)

so that eθ~n·
~L is the rotation around the axis ~n, ‖~n‖ = 1, by angle θ.

3. One verifies the commutation relations

[Li, Lj] = εijkLk. (101)

These generators are related to the angular momentum operators J i via
Li = −iJ i. They satisfy accordingly

[J i, J j] = iεijkJk. (102)

4. Some facts about the irreducible representations of so(3):

• From quantum mechanics we know that there is only one Casimir opera-
tor ~J2 = J2

1 +J2
2 +J2

3 , whose eigenvalues are j(j+1), for j = 0, 1/2, 1, . . ..

• The irreducible representations d(j) are labelled by j and are 2j + 1
dimensional.

• The basis vectors are denoted |j,m〉, m = −j,−j + 1, . . . j, where
d(j)(J3)|j,m〉 = m|j,m〉.

5. Recall that Hc : SU(2) → SO(3) is the covering homomorphism. It gives
rise to the isomorphism hc : su(2)→ so(3) which can be described as follows:

• let σ1, σ2, σ3 be the Pauli matrices. Then Y j = 1
2i
σj is a basis of su(2),

since [Y i, Y j] = εijkY k.

• Then hc is given in this basis by hc(Y
j) = Lj.

• h−1
c = d(1/2).

6. Since SU(2) is simply-connected, any representation d(j) gives rise to a repre-

sentationD(j) of SU(2) according toD(j)(et(hc)
−1(X)) = etd

(j)(X). In particular
D(1/2), is the defining representation of SU(2) as one can show using that
the Pauli matrices are traceless and hermitian.

7. Fact: Only for integer j the representation D(j) of SU(2) can be lifted to a
representation of SO(3).
But, as we know from the previous subsection, for any j it can be lifted to
a projective representation of SO(3). In order to accommodate half-integer
spins, we need to justify that the projective representations of SO(3) corre-
spond to rotation symmetry of physical quantum systems. This will be done
later today, using that quantum states are determined up to a phase.
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8. For any j = 0, 1/2, 1, . . . and a rotation R given by the axis ~n and angle θ
we define the Wigner functions

D
(j)
mm′(R) := 〈j,m|e−iθ~n· ~J(j) |j,m′〉, (103)

where ~J (j) denotes here the angular momentum in the representation d(j).

9. Let us illustrate how the projective character of D(j)(R) for half-integer j
comes about: Consider a rotation R2π by 2π around the ~e3-axis in the j = 1/2
representation. It can be computed in two ways: First, since rotation by 2π
is equal to identity, we obtain D(1/2)(R) = I. On the other hand, formula
(103) gives

D(1/2)(R2π) = e−i2π
σ3
2 = exp

(
− iπ

[
1 0
0 −1

])
=

[
e−iπ 0

0 eiπ

]
= −I. (104)

Since we got two different results, D(1/2) is not a well defined homomorphism
SO(3) → GL(V ) (i.e. representation). But it can still be a well defined
homomorphism SO(3) → GL(V )/U(1) (i.e. projective representation) as
the two results differ only by a sign and thus belong to the same equivalence
class.

10. Any finite dimensional representation of SU(2) is completely reducible i.e.
can be represented as a direct sum of the irreducible representations D(j).
In particular, we have

D(j1) ⊗D(j2) = ⊕j1+j2
j=|j1−j2|D

(j). (105)

This is what is called ”addition of angular momenta”.

6.4 Symmetries of quantum theories

When studying symmetries of a quantum theory, one has to take it seriously that
physical states are defined up to a phase. Thus we consider the following setting:

1. H - Hilbert space of physical states.

2. For Ψ ∈ H, ‖Ψ‖ = 1 define the ray Ψ̂ := { eiθΨ | θ ∈ R }.

3. Ĥ - set of rays with the ray product [Φ̂|Ψ̂] := |〈Φ|Ψ〉|2.

Definition 6.1 A symmetry transformation of a quantum system is an invertible
map Û : Ĥ → Ĥ s.t. [ÛΦ̂|ÛΨ̂] = [Φ̂|Ψ̂]. Such transformations form a group.

Theorem 6.2 (Wigner) For any symmetry transformation Û : Ĥ → Ĥ we can

find a unitary or anti-unitary operator U : H → H s.t. ÛΨ̂ = ÛΨ. U is unique
up to phase.
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Anti-unitary operators are defined as follows:

• A map U : H → H is anti-linear if U(c1Ψ1 + c2Ψ2) = c1UΨ1 + c2UΨ2.

• The adjoint of an anti-linear map is given by 〈Φ|U †Ψ〉 = 〈UΦ|Ψ〉.

• An anti-linear map is called anti-unitary if U †U = UU † = I in which case
〈UΦ|UΨ〉 = 〈Φ|U †UΨ〉 = 〈Ψ|Φ〉.

Anti-unitary operators will be needed to implement discrete symmetries, e.g. time
reversal. For symmetries described by connected Lie groups anti-unitary operators
can be excluded, as we indicate below.

Application of the Wigner theorem:

1. Suppose a connected Lie group G is a symmetry of our theory i.e. there is a
group homomorphism G 3 g 7→ Û(g) into symmetry transformations.

2. The Wigner theorem gives corresponding unitary operators U(g). Since they
are determined up to a phase, they form only a projective representation:

U(g1)U(g2) = eiθ1,2U(g1g2). (106)

(Since G is connected, we can exclude that some U(g) are anti-unitary.
Indeed for a connected group we have g = g2

0 for some g0 ∈ G. Now
U(g) = e−iθU(g0)U(g0) which is unitary no matter if U(g0) is unitary or
anti-unitary).

3. As discussed above5, for a large class of connected Lie groups G (including
SO(3) and P↑+) a projective unitary representation of G corresponds to an

ordinary unitary representation of the covering group G̃

G̃ 3 g̃ 7→ Ũ(g̃) ∈ B(H). (107)

In particular, projective unitary representations of SO(3) correspond to ordi-
nary unitary representations of SU(2) and thus there is room for half-integer
spin!

5Strictly speaking, in previous sections we tacitly assumed that the representations act on
finite-dimensional vector spaces, while here H can be infinite dimensional. Fortunately, the
relevant results generalize.
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7 Mathematical framework for QED

Main reference for this section is [17, Chapter 7].

7.1 Classical field theory

Consider a Lagrangian L(φ, φ∗, ∂φ, ∂φ∗;A, ∂A) where A is a vector field, φ a com-
plex scalar field. Suppose first that L is invariant under the transformations

φε(x) = eiε(x)φ(x), φ∗ε(x) = e−iε(x)φ∗(x), Aµ,ε(x) = Aµ(x) + ∂µε(x), (108)

for some function ε. Thus the corresponding variation of the Lagrangian must
vanish. Exploiting the Euler-Lagrange equations we get

δL = (∂µj
µ)ε+ (jν − ∂µF µν)∂νε− (F µν)∂µ∂νε, (109)

where

jµ(x) :=
∂L

∂(∂µφ)
(x)iφ(x)− ∂L

∂(∂µφ∗)
(x)iφ∗(x), F µν := − ∂L

∂(∂µAν)
(110)

• From the ∂µ∂νε-term of the (109) we obtain that the symmetric part of F µν

vanishes, i.e.

F µν = −F νµ (111)

• From the ∂νε-term of the (109) we get the local Gauss Law

∂µF
µν = jν (112)

• From the ε-term of (109) we get ∂µj
µ = 0 and ∂tQ = 0, where

Q =

∫
d3y j0(0, ~y). (113)

(Noether’s theorem)

• Furthermore, Q is the infinitesimal generator of the global U(1) symmetry,
i.e.

{Q, φ(0, ~x)} = − d

dε
φε(0, ~x)|ε=0 = −iφ(0, ~x), (114)

{Q, φ∗(0, ~x)} = − d

dε
φ∗ε(0, ~x)|ε=0 = iφ∗(0, ~x). (115)

Here the Poisson bracket is defined by

{F,G} =

∫
d3z

(
δF

δφ(0, ~z)

δG

δπ(0, ~z)
− δF

δπ(0, ~z)

δG

δφ(0, ~z)

)
+ · · · (116)

where π(z) = ∂L
∂(∂0φ)(z)

is the canonical momentum and the omitted terms

correspond to φ∗ and A. (Note, however, that terms corresponding to A are
not relevant for (115)).
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• On the other hand using ∂µF
µν = jν we can compute

−iφ(0, ~x) = {Q, φ(0, ~x)} =

∫
d3y {j0(0, ~y), φ(0, ~x)}

=

∫
d3y {∂iF i,0(0, ~y), φ(0, ~x)} = lim

R→∞

∫
BR

d3y {~∇ · ~E(0, ~y), φ(0, ~x)}

= lim
R→∞

∫
∂BR

d~σ(~y) · { ~E(0, ~y), φ(0, ~x)}, (117)

where ~E := (F 1,0, F 2,0, F 3,0), BR is a ball of radius R centered at zero,
∂BR its boundary (a sphere) and we used the Stokes theorem. Note that in
quantum theory, where { · , · } → −i[ · , · ] above6, the last expression would
be zero by locality, giving a contradiction!

• One possible way out (which we will not follow) is to abandon locality of
charged fields but keep ∂µF

µν = jν (Quantisation in the Coulomb gauge).

• We will follow instead the Gupta-Bleuler approach, where all fields are local,
but 〈Ψ1|(∂µF µν − jν)Ψ2〉 = 0 only for Ψ1,Ψ2 in some ‘physical subspace’
H′ ⊂ H. This will enforce 〈Ψ|Ψ〉 < 0 for some Ψ ∈ H thus we have to use
‘indefinite metric Hilbert spaces’ (Krein spaces)

• Incidentally, local, Poincaré covariant massless vector fields Aµ do exist on
Krein spaces (which is not the case on Hilbert spaces). Thus we will have
candidates for the electromagnetic potential.

7.2 Strocchi-Wightman framework [18,19]

Definition 7.1 An ‘indefinite metric Hilbert space’ (Krein space) H is a vector
space equipped with a sesquilinear form 〈 · | · 〉 s.t.

• 〈 · | · 〉 is non-degenerate, i.e. for any Ψ 6= 0 there is some Φ ∈ H s.t.
〈Ψ|Φ〉 6= 0.

• H carries an auxiliary positive-definite scalar product ( · | ·) w.r.t. which it is
a Hilbert space.

• There is a bounded, invertible operator η on H, self-adjoint w.r.t. ( · | ·), s.t.
〈Ψ1|Ψ2〉 = (Ψ1|ηΨ2).

Only the first property above is physically important. The role of the last two
properties is to provide a topology on H which is needed for technical reasons (e.g.
density of various domains).

Definition 7.2 A Strocchi-Wightman relativistic quantum mechanics is given by:

6It should be mentioned that for gauge theories the standard quantisation prescription
{ · , · } → −i[ · , · ] may fail in general and a detour via ‘Dirac brackets’ is required. However, in
the above situation the simple analogy can be maintained.
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1. A Krein space H.

2. A physical subspace H′ ⊂ H s.t. 〈Ψ|Ψ〉 ≥ 0 for Ψ ∈ H′.

3. The physical Hilbert spaceHph := (H′/H′′)cpl, whereH′′ := {Ψ ∈ H′ | 〈Ψ|Ψ〉 =
0}. Its elements are equivalence classes [Ψ] = {Ψ + Ψ0 |Ψ0 ∈ H′′ }, where
Ψ ∈ H′.

4. A 〈 · | · 〉-unitary representation P̃↑+ 3 (Λ̃, a) 7→ U(Λ̃, a) in H s.t. H′ is
invariant under U . Then U induces a unitary representation on Hph by

Uph(Λ̃, a)[Ψ] = [U(Λ̃, a)Ψ]. We assume that Uph is continuous and satisfies
the spectrum condition.

5. A unique (up to phase) vacuum vector Ω ∈ H′ s.t. 〈Ω|Ω〉 = 1 and U(Λ̃, a)Ω =
Ω.

Definition 7.3 A Strocchi-Wightman QFT is given by:

1. A Strocchi-Wightman relativistic QM (H,H′, U,Ω).

2. A family of operator-valued distributions (φ
(κ)
` , D), κ ∈ I, ` = 1, 2, . . . rκ s.t.

• I is some finite or infinite collection of indices numbering the types
of the fields corresponding to finite-dimensional representations D(κ) of
L̃↑+ = SL(2,C).

• For a fixed κ ∈ I the field φ(κ) = (φ
(κ)
` )`=1,...rκ transform under D(κ).

• For any κ, ` there exists some κ, ` s.t. φ
(κ)
` (f)† = φ

(κ̄)
¯̀ (f̄).

• Ω ∈ D and U(Λ̃, a)D ⊂ D for all (Λ̃, a) ∈ P̃↑+.

satisfying:

(a) (Locality) If supp f1 and supp f2 are spacelike separated, then

[φ
(κ)
` (f1), φ

(κ′)
`′ (f2)]− = 0 or [φ

(κ)
` (f1), φ

(κ′)
`′ (f2)]+ = 0 (118)

in the sense of weak commutativity on D. (Here −/+ refers to commutator/anti-
commutator).

(b) (Covariance) For all (Λ̃, a) ∈ P̃↑+ and f ∈ S

U(Λ̃, a)φ
(κ)
` (f)U(Λ̃, a)† =

∑
`′

D
(κ)
``′ (Λ̃

−1)φκ`′(f(Λ,a)). (119)

Here f(Λ,a)(x) = f(Λ−1(x− a)).

(c) (Cyclicity of the vacuum) D = Span{φ(κ1)
`1

(f1) . . . φ
(κm)
`m

(fm)Ω | f1, . . . fm ∈
S,m ∈ N0 } is a dense subspace of H in the topology given by ( · | · ).

The distributions (φ
(κ)
` , D) are called the Strocchi-Wightman quantum fields.
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7.3 Free field examples

7.3.1 Free Wightman fields

1. Suppose first that H is a Hilbert space (i.e. 〈· | ·〉 is a positive-definite scalar
product and we can choose H′ = H). Then the above setting is called the
Wightman framework for fields with arbitrary (finite) spin.

2. Let us stay for a moment in this Hilbert space framework. Recall that
finite-dimensional irreducible representations D(κ) of L̃↑+ are labelled by two
numbers (A,B). From the physics lecture you know the following free field
examples:

• (0, 0): scalar field φ

•
(

1
2
, 1

2

)
: massive vector field jµ

•
(

1
2
, 0
)
⊕
(
0, 1

2

)
: Dirac field ψ

• (1, 0)⊕ (0, 1): Faraday tensor F µν .

3. It is however not possible to construct a massless free vector field Aµ on a
Hilbert space which is local and Poincaré covariant [25]. Such fields turn
out to exist on Krein spaces, which is usually given as the main reason to
introduce them.

7.3.2 Free massless vector field Aµ on Krein space

The Gupta-Bleuler electromagnetic potential has the form

Aµ(x) =

∫
d3k

2k0(2π)3

3∑
λ=0

[a(λ)(k)ε(λ)
µ (k)e−ikx + a(λ)†(k)ε(λ)∗

µ (k)eikx], (120)

where k0 = |k| and ε
(λ)
µ are polarisation vectors which satisfy the orthogonality

and completeness relations

ε(λ),µ(k) · ε(λ′)∗
µ (k) = gλλ

′
,
∑
λ

(gλλ)−1ε(λ)
µ (k) · ε(λ)∗

ν (k) = gµν . (121)

For the aλ, a(λ)† we have

[a(λ)(k), a(λ′)†(k′)] = −gλλ′2k0(2π)3δ(~k − ~k′). (122)

Due to −g00 = −1 we have 〈a(0)†(f)Ω|a(0)†(f)Ω〉 < 0 thus our ‘Fock space’ H turns
out to be a Krein space. Furthermore, the ‘photons’ above have four polarisations
and not two. These unphysical degrees of freedom will be eliminated by the Gupta-
Bleuler subsidiary condition (127) below.

Let us point out another peculiarity of this potential: We can form Fµν =
∂µAν − ∂νAµ so that εαβµν∂βFµν(x) = 0 is automatic. But the remaining free
Maxwell equations fail:

∂µF
µν(x) = −∂ν(∂ρAρ)(x) 6= 0. (123)

This can be expected on general grounds:
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Theorem 7.4 (Strocchi [20, 21]) Any Strocchi-Wightman vector field Aµ with
∂µF

µν(x) = 0 is trivial, i.e. 〈Ω|F µν(x)Fαβ(y)Ω〉 = 0.

This highlights the necessity of a gauge-fixing term in the Lagrangian, which is
another point to which we will come below in the context of interacting QED.

7.4 Quantum Electrodynamics

Definition 7.5 QED is a Strocchi-Wightman QFT whose fields include F µν , jµ

and some ‘charged fields’ φ(κ) s.t. the physical subspace H′ satisfies:

(i) There is a dense domain D′ ⊂ H′ s.t. F µν(f)D′ ⊂ D′, jµ(f)D′ ⊂ D′ and

U(a, Λ̃)D′ ⊂ D′.

(ii) For Ψ1 ∈ H′ and Ψ2 ∈ D′

〈Ψ1|(∂µF µν − jν)(f)Ψ2〉 = 0, 〈Ψ1|(εµνρσ∂νF ρσ)(f)Ψ2〉 = 0. (124)

For QED defined as above, one can define the electric charge operator by suitably
regularizing Q =

∫
d3y j0(0, ~y).

Theorem 7.6 (Strocchi-Picasso-Ferrari [22]) Suppose that Q is an infinitesimal
generator of the global U(1) symmetry, i.e. for some field φ

φ(x) = [Q, φ(x)] on H (125)

and that 〈Ψ1|φ(x)Ψ2〉 6= 0 for some Ψ1,Ψ2 ∈ H′. Then

1. There is Ψ ∈ D′ s.t. (∂µF
µν − jν)(x)Ψ 6= 0.

2. There is 0 6= Ψ ∈ H′ s.t. 〈Ψ|Ψ〉 = 0, i.e. H′′ 6= {0}.

3. There is Ψ ∈ H s.t. 〈Ψ|Ψ〉 < 0.

The proof is simple and relies on a Stokes theorem computation analogous to (117).
This theorem shows that the Maxwell equations can hold on H′ at best in matrix
elements and that the Krein space framework is needed in (local) QED also in the
presence of interactions.

Definition 7.7 We say that QED is in the Gupta-Bleuler gauge if it contains (in
addition to other fields) a vector field Aµ s.t. Fµν = ∂µAν − ∂νAµ and

∂µF
µν − jν = −∂ν(∂ρAρ) (126)

holds as an operator identity on H. Furthermore, the physical subspace is chosen
as

H′ := {Ψ ∈ H | (∂ρAρ)(+)(f)Ψ = 0 for all f ∈ S }, (127)

where (∂ρA
ρ)(+) is the positive frequency part of (∂ρA

ρ).
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We add several remarks on this definition:

1. Note that by applying ∂ν to (126) and using current conservation we obtain
�(∂ρA

ρ) = 0, thus the decomposition into positive and negative frequency
parts is meaningful. For this reason, (124) formally hold. But positivity of
the scalar product on H′ needs to be assumed. (Known only for the free
electromagnetic field).

2. The equation (126) comes from a classical Lagrangian with the gauge-fixing
term, e.g.

Lgf = (Dµφ)∗(Dµφ)− 1

4
FµνF

µν − 1

2
(∂µA

µ)2. (128)

Lgf is still invariant under ‘residual’ local gauge transformations s.t. �ε(x) =
0. Denote infinitesimal transformations of the fields as δεφ(x) = iε(x)φ(x),
δεφ(x)∗ = −iε(x)φ(x)∗ and δεAµ(x) = ∂µε(x).

3. Def. Let A denote the algebra spanned by polynomials of quantum fields
Aµ, jµ, φ, φ∗ smeared with smooth, compactly supported functions. We
extend δε to A via the Leibniz rule and denote the subalgebra of (residual)
gauge-invariant elements by Agi.

4. It turns out, that a ‘local vector’ (i.e. Ψ = AΩ, where A ∈ A) belongs to H′
iff A ∈ Agi [17].

7.5 Electrically charged states of QED

Important problem in QED is a construction of physical electrically charged states.
Vectors of the form φ(f)Ω, where φ is a charged field, are not in H′, because φ is
not invariant under residual gauge transformations. Moreover:

Proposition 7.8 [17] For any local vectors Ψ,Φ ∈ H′ in QED we have 〈Ψ|QΦ〉 =
0.

We face the problem of constructing a field φC which is invariant under (residual)
local gauge transformations (so that φC(f)Ω is ‘close’ to H′) and non-invariant
under global gauge transformations (so that φC(f)Ω is charged). Here is a candi-
date:

φC(x) := ei[(∆)−1∂iA
i](x)φ(x) = ei[(∆)−1∂i(A

i+∂iε)](x)eiε(x)φ(x), (129)

where the last equality holds for local gauge transformations but fails for global
(i.e. ε(x)=const). φC is simply the (non-local) charged field in the Coulomb gauge
expressed in terms of the Gupta-Bleuler fields. Indeed, we can see (129) as a gauge
transformation. Then the corresponding transformation applied to the potential
gives

Aµ,C(x) = Aµ(x) + ∂µ[(∆)−1∂iA
i](x). (130)
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which satisfies ~∇· ~AC = 0. Then φC(f)Ω is a candidate for an electrically charged
states. Since φC(f) is a very singular objects, this vector ‘escapes’ from H and
its control (in the perturbative or axiomatic setting) requires subtle mathematical
methods (cf. [17, 18]). These are outside of the scope of these lectures.
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