Seminar “Introduction to Information Theory”
Summer Semester 2020

Robert König robert.koenig@tum.de
Time & Location: beginning of term (block-seminar), TBD

Topics

This seminar will serve as an introduction to basic concepts of information theory. Topics to be discussed include information-theoretic quantities (entropies) and corresponding inequalities, differential entropies and continuous variables, as well as operational problems such as Shannon’s noisy channel coding theorem, data compression and rate distortion theory.

The following concepts should be reviewed prior to the seminar:

- discrete and continuous random variables, probability density, conditional distributions, Bayes rule, independence, expectation value and variance, Markov’s inequality/Chebyshev’s inequality, weak law of large numbers and tail bounds (Chernoff) for i.i.d. random variables.

We will discuss the following topics. For each topic in the following list, we give a number of keywords as suggested concepts to be covered in your talk. While these should all be covered in some form, it is up to you to make a reasonable selection of subtopics which you discuss in more detail. Please try to include at least one full proof of a result, and otherwise try to convey the main ideas/concepts.

Some suggested references are given; if you use complementary materials, please try to make sure to follow similar notation as in “standard” textbooks such as [2], [4] and [6].

3. Mutual information and capacity-cost function: Chain rule, data processing inequality. Capacity-cost function for a DMC and its additivity. Statement and (weak) converse to channel coding theorem. [6], Chapter 2], [2], Chapter 7.9]

4. Achievability of capacity: Maximum likelihood decoding, random codebook generation, achievability of capacity for the binary symmetric channel. Statement and proof sketch of general channel coding theorem. [2], Chapter 7.7] [6], Chapter 2).

5. Data compression: Asymptotic equipartition property (AEP), data compression. Lossless compression: Kraft’s inequality, bounds on optimal codes, Huffman codes. [2], Chapter 3 and 5]

6. Codes for communication: rate & code distance, linear codes, generator- and parity check matrix, Hamming code and Hamming bound. Syndrome/Maximum likelihood decoding decoding, Weight enumerators and MacWilliams identities. [6], Chapter 7]

7. Additive white Gaussian noise channel: differential entropy, AEP for continuous variables, achievability and converse. [2], Chapter 9]

8. Large deviation theory: Sanov’s theorem, hypothesis testing and Stein’s lemma. [2], Chapter 11]
Guidelines

- The presentation of each topic should ideally last less than 45–50 minutes. The talks should be given in English.

- Presentations should be given predominantly on the blackboard but you may use a projector for showing, e.g., pictures or graphs. You may also use slides e.g., for reviewing materials as long as the total time doing so does not exceed 15–20 minutes.

- The target audience are the other students attending the seminar. Try to make sure it is understandable for everyone.

- You are asked to “pair up”. Each pair of students will be assigned two of the topics below, and each student is asked to give a non-negligible fraction of the associated presentation. If there is an odd number of participants, one student will be assigned a single (more advanced) topic to present.

- You are encouraged to submit a summary (at most 2 pages) of the assigned topic, preferably at least one week before your talk. This will be corrected and/or provided as a handout for the other students.

- You can arrange a meeting with me or one of my assistants prior to the presentation. This is intended to help identify key concepts to be presented, address specific technical questions, and to make sure your presentation is ready for public consumption. These meetings should organized topic-wise (in pairs).

- Attendance of and active participation in all talks except in justified circumstances will be required to receive credits.

Other information

This seminar will be held as a block-seminar at the beginning of term, most likely at the end of April (week 2 of lectures). Presentations should therefore be prepared during the semester break. The exact date/times will be decided once the number of participants is determined.

References

Note: You may have to follow the Proxy setup instructions to access some of these materials through the university’s network.