### Entropy Production of Doubly Stochastic Quantum Channels

**Alexander Müller-Hermes, Daniel Stilck Franca, Michael M. Wolf**

Journal of Mathematical Physics 57, 2 , (2016)

**arXiv.org**: 1505.04678

^{}

**Abstract:**We study the entropy increase of quantum systems evolving under primitive, doubly stochastic Markovian noise and thus converging to the maximally mixed state. This entropy increase can be quantified by a logarithmic-Sobolev constant of the Liouvillian generating the noise. We prove a universal lower bound on this constant that stays invariant under taking tensor-powers. Our methods involve a new comparison method to relate logarithmic-Sobolev constants of different Liouvillians and a technique to compute logarithmic-Sobolev inequalities of Liouvillians with eigenvectors forming a projective representation of a finite abelian group. Our bounds improve upon similar results established before and as an application we prove an upper bound on continuous-time quantum capacities. In the last part of this work we study entropy production estimates of discrete-time doubly-stochastic quantum channels by extending the framework of discrete-time logarithmic-Sobolev inequalities to the quantum case.