BannerHauptseite TUMHauptseite LehrstuhlMathematik SchriftzugHauptseite LehrstuhlHauptseite Fakultät

Quantum memory for entangled two-mode squeezed states

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, A. Serafini, M. Owari, M. B. Plenio, M. M. Wolf, E. S. Polzik

Nature Physics 7, 13-16 (2011)

DOI: 10.1038/nphys1819 Pfeil
*arXiv.org*: 1002.1920 Pfeil

Abstract: A quantum memory for light is a key element for the realization of future quantum information networks. Requirements for a good quantum memory are (i) versatility (allowing a wide range of inputs) and (ii) true quantum coherence (preserving quantum information). Here we demonstrate such a quantum memory for states possessing Einstein-Podolsky-Rosen (EPR) entanglement. These multi-photon states are two-mode squeezed by 6.0 dB with a variable orientation of squeezing and displaced by a few vacuum units. This range encompasses typical input alphabets for a continuous variable quantum information protocol. The memory consists of two cells, one for each mode, filled with cesium atoms at room temperature with a memory time of about 1msec. The preservation of quantum coherence is rigorously proven by showing that the experimental memory fidelity 0.52(2) significantly exceeds the benchmark of 0.45 for the best possible classical memory for a range of displacements.