BannerHauptseite TUMHauptseite LehrstuhlMathematik SchriftzugHauptseite LehrstuhlHauptseite Fakultät

Entanglement in fermionic systems

Mari-Carmen Bañuls, J. Ignacio Cirac, Michael M. Wolf

Physical Review A 76, 022311 **, (2007)

DOI: 10.1103/PhysRevA.76.022311 Pfeil
*arXiv.org*: 0705.1103 Pfeil

Abstract: The anticommuting properties of fermionic operators, together with the presence of parity conservation, affect the concept of entanglement in a composite fermionic system. Hence different points of view can give rise to different reasonable definitions of separable and entangled states. Here we analyze these possibilities and the relationship between the different classes of separable states. We illustrate the differences by providing a complete characterization of all the sets defined for systems of two fermionic modes. The results are applied to Gibbs states of infinite chains of fermions whose interaction corresponds to a XY-Hamiltonian with transverse magnetic field.