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Differential Topology: Exercise Sheet 3

Exercises (for Nov. 21th and 22th)

3.1 Smooth maps
Prove the following:

(a) A map f : M → N between smooth manifolds (M,A), (N,B) is smooth if and only
if for all x ∈ M there are pairs (U, φ) ∈ A, (V, ψ) ∈ B such that x ∈ U , f(U) ⊂ V
and ψ ◦ f ◦ φ−1 : φ(U)→ ψ(V ) is smooth.

(b) Compositions of smooth maps between subsets of smooth manifolds are smooth.

Solution:

(a) As the charts of a smooth structure cover the manifold the above property is certainly
necessary for smoothness of f : M → N .

To show that it is also sufficient, consider two arbitrary charts
(
Ũ , φ̃

)
∈ A and(

Ṽ , ψ̃
)
∈ B. We need to prove that the map ψ̃ ◦ f ◦ φ̃−1 : φ̃(Ũ)→ ψ̃(Ṽ ) is smooth.

Therefore consider an arbitrary y ∈ φ̃(Ũ) such that there is some x ∈ M such that
x = φ̃−1(y). By assumption there are charts (U, φ) ∈ A, (V, ψ) ∈ B such that x ∈ U ,
f(U) ⊂ V and ψ ◦ f ◦ φ−1 : φ(U) → ψ(V ) is smooth. Now we choose U0, V0 such
that x ∈ U0 ⊂ U ∩ Ũ and f(x) ∈ V0 ⊂ V ∩ Ṽ and therefore we can write

ψ̃ ◦ f ◦ φ̃−1|φ̃(U0)
=
(
ψ̃ ◦ ψ−1

)
◦
(
ψ ◦ f ◦ φ−1

)
◦
(
φ ◦ φ̃−1

)
. (1)

As a composition of smooth maps, we showed that ψ̃ ◦ f ◦ φ̃−1|φ̃(U0)
is smooth. As

x ∈M was chosen arbitrarily we proved that ψ̃ ◦ f ◦ φ̃−1 is a smooth map.

(b) Let (M,A), (N,B), (P, C) denote smooth manifolds and S ⊂M , on which we define
smooth functions f : S → N and g : f(S)→ P . We will show that the composition
g ◦ f : S → P is smooth as well. For an arbitrary point x ∈ S there are open
neighborhoods U ⊂ M and V ⊂ N of x ∈ M and y = f(x) ∈ N , respectively such
that there are smooth extensions f̃ : U → N and g̃ : V → P . We will prove that
g̃ ◦ f̃ : U ∩ f̃−1(V )→ P is a smooth map which would give us an extension of g ◦ f
in a neighborhood of x ∈ M . Then we would be finished as x ∈ M was chosen
arbitrarily.
Consider charts (U ′, φ) ∈ A and (W ′, ψ) ∈ C with x ∈ U ′ and g ◦ f(x) ∈ W ′ for
which we want to prove thath

ψ ◦ g̃ ◦ f̃ ◦ φ−1 : φ
(
U ′ ∩ U ∩ f̃−1(V )

)
→ ψ(V ′) ∩ V (2)



is smooth. To do this take a chart (V ′, ν) ∈ B restrict it to

V0 ⊂ f̃ ◦ φ−1
(
φ
(
U ′ ∩ U ∩ f̃−1(V )

)
∩ V ′

)
with f(x) ∈ V0 and insert it as

ψ ◦ g̃ ◦ f̃ ◦ φ−1 =
(
ψ ◦ g̃ ◦ ν−1

)
◦
(
ν ◦ f̃ ◦ φ−1

)
. (3)

This shows that ψ◦ g̃◦ f̃ ◦φ−1 : φ(V0)→ ψ◦ g̃◦ f̃ ◦φ−1(V0) is smooth as a composition
of two smooth maps as f̃ and g̃ are smooth themselves. This finishes the proof.

3.2 Mazur’s swindle
The connected sum ] is a basic operation on oriented, connected, compact, n-dimensional
manifolds. It has a number of interesting properties. One can show that

(a) M]Sn 'M (unit element)

(b) (M]N)]P 'M](N]P ) (associativity)

(c) M]N ' N]M (commutativity)

for n-dimensional manifolds M,N,P where ' denotes equal up to homeomorphisms.

Show that the sphere Sn is itself irreducible, i.e. if Sn 'M]N for n-dimensional manifolds
M,N , then M,N ' Sn.

Note: You can use the above properties without proof. Note that the associativity also
holds for a connected sum of infinitely many topological manifolds.

Solution:
Assume that Sn ' M]N for two topological manifolds M,N . We now use associativity
of the connected sum of infinitely many topological manifolds:

Sn
(a)
' Sn]Sn]Sn] . . .

Sn'M]N
' (M]N)](M]N)](M]N)] . . .

(b)
' M](N]M)](N]M)] . . .

(c)
' M]Sn]Sn] . . .

(a)
' M

By first using commutativity of the connected sum one can prove N ' Sn in the same
way. This trick is known as Mazur’s swindle because of its similarity to the fake proof of
1 = 0 via Grandi’s series

3.3 System of inequalities
Is the set S := {x ∈ R3 |

∑3
i=1 x

3
i = 1, and

∑3
i=1 xi = 0} a smooth submanifold of R3?

Solution:
Take the map f : R3 → R2 defined by f(x1, x2, x3) =

(∑3
i=1 x

3
i ,
∑3

i=1 xi
)
. We have

S = f−1(1, 0) and furthermore

dfx =

(
3x21 3x22 3x23
1 1 1

)
(4)

which is a rank 2 matrix for every x ∈ f−1(1, 0) (Note that it is rank 1 iff x21 = x22 = x23
which is impossible for the values we have). This means that (1, 0) is a regular value and
S is a smooth manifold of dimension 1.



3.4 Lie groups

(a) Let G be a Lie group and H ⊂ G a smooth submanifold that is also a subgroup of
G. Show that H is a Lie group as well.

(b) Define the block matrix

σ :=
n⊕
k=1

(
0 −1
1 0

)
(5)

and the real symplectic group Sp(2n,R) := {S ∈ R2n×2n | SσST = σ}. Prove
that Sp(2n,R) with the matrix multiplication and the matrix inversion forms a Lie
group. What is the manifold dimension of Sp(2n,R)?

Solution:

(a) As H is a submanifold of G the inclusion map e : H → G is smooth and an
embedding. This has been proven in the lecture as for every point h ∈ H ⊂ G there
is a chart (U, φ) of G around h such that H ∩ U = φ−1(Rn−k) for some k ∈ N.
For this chart we have φ ◦ e ◦ φ|−1H∩U(x1, . . . , xn−k) = (x1, . . . , xn−k, 0, . . . , 0) which
is smooth. This also shows that e is an embedding. Using the result from the next
exercise 3.5(b) we see that e : N → e(N) is also a diffeomorphism which implies
that the maps

µH = e−1 × e−1 ◦ µG ◦ e× e : H ×H → H (6)

iH = e−1 ◦ iG ◦ e : H → H (7)

are smooth maps as compositions of smooth maps. This finishes the proof.

(b) It follows from SσSTσ−1 = I2n that S−1 = σSTσ−1 which shows that elements in
Sp(2n,R) are invertible, i.e. that Sp(2n,R) is a subgroup of GL(2n,R). To show
that it is also a smooth submanifold, consider f : GL(2n,R) → R2n×2n

skew = {A ∈
R2n×2n | AT = −A} via f(S) = SσST which maps invertible matrices to skew-
symmetric matrices. Now we can calculate dfS(B) = BσST + SσBT = (BσST ) −
(BσST )T using σT = −σ. Since B ∈ GL(2n,R) and σST is non singular, we see that
f is a surjective map. Therefore σ is a regular value of f which shows that Sp(2n,R)

is a smooth submanifold of GL(2n,R). The manifold dimension of the group is (2n−1)n
2

as this is the dimension of R2n×2n
skew . The smoothness of the induced multiplication and

inversion maps follows from part (a).

3.5 Immersions and embeddings

(a) Formalize and prove the statement: an immersion is locally an embedding.

(b) Let (M,A), (N,B) denote two smooth manifolds. Show that f : M → N is an
embedding if and only if f : M → f(M) is a diffeomorphism.

Solution:

(a) Let (M,A) and (N,B) denote smooth manifolds of dimensions dimM = m and
dimN = n ≥ m and let f : M → N be an immersion between the manifolds. The
statement can be formalized as follows:

For all x ∈ M there is a neighborhood U of x such that f |U : U → f(U) is an
embedding, i.e. an immersion mapping U homeomorphically to f(U).



In order to prove the statement consider a point x ∈ M . We already know that if
f is an immersion in every neighborhood. So we only have to find a neighborhood
that is mapped homeomorphically to its image by f .

Applying the constant rank theorem to f (as an immersion rank(f) = dim(N) at
every point x ∈ M) yields two charts (U, φ) ∈ A, (V, ψ) ∈ B such that x ∈ U ,
f(U) ⊂ V and ψ ◦ f ◦ φ−1 : φ(U) → ψ(V ) is given by ψ ◦ f ◦ φ−1(x1, . . . , xm) =
(x1, . . . , xm, 0, . . . , 0). This is the canonical embedding of φ(U) ⊂ Rm into Rn. As
φ, ψ are homeomorphisms by definition this shows that f |U : U → f(U) maps U
homeomorphically to U .

(b) If f : M → f(M) is a diffeomorphism, it is clear that f : M → N is an embedding.
It is trivially a homeomorphism onto f(M) and as a diffeomorphism dfx has to be
invertible for all x ∈M . This shows that it is also an immersion because rank(dfx) =
dim(M) for all x ∈M .

If f : M → N is an embedding, f : M → f(M) is a smooth homeomorphism by
definition. It remains to show that f−1 : f(M) → M is locally smooth. Therefore
take an arbitrary y ∈ f(M) which is mapped to f−1(y) = x ∈ M . Because f
is an immersion, we can use the constant rank theorem to obtain charts (U, φ) ∈
A, (V, ψ) ∈ B such that x ∈ U , f(U) ⊂ V and ψ ◦ f ◦ φ−1 : φ(U) → ψ(V ) is
given by ψ ◦ f ◦ φ−1(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0). Here m = dim(M) and
n = dim(N). Now we can write π ◦ f−1 ◦ ψ−1 : ψ(f(U)) → Rm as the projection
π ◦ f−1 ◦ψ−1(x1, . . . , xn) = (x1, . . . , xm) which is of course smooth. As (f(U), ψ) is a
chart of the manifold f(M) in a neighborhood of y ∈ f(M) and because it is enough
to check smoothness or one pair of charts (due to Ex. 3.1(a)) this finishes the proof.


