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Exercises (for Nov. 21th and 22th)

3.1 Smooth maps
Prove the following;:

(a) A map f: M — N between smooth manifolds (M, A), (N, B) is smooth if and only
if for all x € M there are pairs (U, ¢) € A, (V,¢) € B such that x € U, f(U) CV
and Yo fog™: d(U) — (V) is smooth.

(b) Compositions of smooth maps between subsets of smooth manifolds are smooth.
Solution:

(a) As the charts of a smooth structure cover the manifold the above property is certainly
necessary for smoothness of f : M — N.

To show that it is also sufficient, consider two arbitrary charts <U , é) € A and
(V, @E) € B. We need to prove that the map ¢ o fo ¢~ : ¢(U) — (V) is smooth.

Therefore consider an arbitrary y € (;3([7 ) such that there is some x € M such that
z = ¢~ '(y). By assumption there are charts (U, ¢) € A, (V,4) € B such that z € U,
f(U)cVand Yo fopt:¢(U)— (V) is smooth. Now we choose Uy, Vi such
that z € Uy c UNU and f(z) € Vo € VNV and therefore we can write

oS 06 sy = (bov)o(wofos)o(p0d™) . 1)

As a composition of smooth maps, we showed that 9 o fo 95_1|<13(Uo) is smooth. As

2 € M was chosen arbitrarily we proved that ¢ o f o ¢~! is a smooth map.

(b) Let (M, .A), (N, B),(P,C) denote smooth manifolds and S C M, on which we define
smooth functions f:S — N and g : f(5) — P. We will show that the composition
go f : S — P is smooth as well. For an arbitrary point x € S there are open
neighborhoods U € M and V' C N of x € M and y = f(z) € N, respectively such
that there are smooth extensions f :U — N and g : V — P. We will prove that
gof:UNf (V) — Pis asmooth map which would give us an extension of g o f
in a neighborhood of x € M. Then we would be finished as * € M was chosen
arbitrarily.

Consider charts (U’,¢) € A and (W',¢) € C with « € U’ and go f(x) € W’ for
which we want to prove thath

bogofoo o (UNUNTHV)) = u(V)NV (2)



3.2

3.3

is smooth. To do this take a chart (V' ,v) € B restrict it to
VoC fop? (gb(U' NUN fﬁl(V)> N V’) with f(z) € V and insert it as

pogofos =(wogor)o(vefos) . (3)

This shows that wogofoj)_l co(Vo) — Yogofo ¢~ (Vp) is smooth as a composition
of two smooth maps as f and g are smooth themselves. This finishes the proof.

Mazur’s swindle
The connected sum f is a basic operation on oriented, connected, compact, n-dimensional
manifolds. It has a number of interesting properties. One can show that

(a) M#S™ ~ M (unit element)
(b) (MEN)tP ~ M#(N{P) (associativity)
(¢) MEN ~ N§M (commutativity)

for n-dimensional manifolds M, N, P where ~ denotes equal up to homeomorphisms.

Show that the sphere S is itself irreducible, i.e. if S™ ~ M{N for n-dimensional manifolds
M, N, then M,N ~ S™.

Note: You can use the above properties without proof. Note that the associativity also
holds for a connected sum of infinitely many topological manifolds.

Solution:
Assume that S™ ~ M#N for two topological manifolds M, N. We now use associativity
of the connected sum of infinitely many topological manifolds:

o gragrpsns
TR MENY BN BN .
o)
O MA(NIM)E(NEM)E .
< argsmese.
9 M

By first using commutativity of the connected sum one can prove N ~ S™ in the same
way. This trick is known as Mazur’s swindle because of its similarity to the fake proof of
1 = 0 via Grandi’s series

System of inequalities

Is the set S:= {z € R® | 327 2% =1, and 37, 2; = 0} a smooth submanifold of R??
Solution:

Take the map f : R® — R? defined by f(xq, 19, 23) = (Z?:1 3, ?:1 m,) We have
S = f71(1,0) and furthermore

(32} 3a3 323
2

which is a rank 2 matrix for every z € f~1(1,0) (Note that it is rank 1 iff 23 = 23 = 22
which is impossible for the values we have). This means that (1,0) is a regular value and
S is a smooth manifold of dimension 1.



3.4 Lie groups

(a)
(b)

Let G be a Lie group and H C GG a smooth submanifold that is also a subgroup of
G. Show that H is a Lie group as well.

Define the block matrix

~ (0 -1
=@ ) ”
and the real symplectic group Sp(2n,R) := {S € R*?" | SgST = o}. Prove

that Sp(2n,R) with the matrix multiplication and the matrix inversion forms a Lie
group. What is the manifold dimension of Sp(2n,R)?

Solution:

(a)

As H is a submanifold of G the inclusion map e : H — G is smooth and an
embedding. This has been proven in the lecture as for every point h € H C G there
is a chart (U,¢) of G around h such that H NU = ¢ (R %) for some k € N.
For this chart we have ¢ o e o ¢| by (21, ..., Tnk) = (T1,..., Ty 4,0,...,0) which
is smooth. This also shows that e is an embedding. Using the result from the next
exercise 3.5(b) we see that e : N — e(N) is also a diffeomorphism which implies
that the maps

1

pg=e¢ ' xelougoexe: Hx H— H (6)

ig=etoigoe: H—H (7)

are smooth maps as compositions of smooth maps. This finishes the proof.

It follows from SoSTo~! = I,, that S™' = 0570~ which shows that elements in
Sp(2n,R) are invertible, i.e. that Sp(2n,R) is a subgroup of GL(2n,R). To show
that it is also a smooth submanifold, consider f : GL(2n,R) — RZ2" = [A ¢

skew

R2<2n | AT = — A} via f(S) = SoST which maps invertible matrices to skew-
symmetric matrices. Now we can calculate dfs(B) = BoST + SoBT = (BoST) —
(BoST)T using o7 = —0. Since B € GL(2n,R) and ¢ST is non singular, we see that

f is a surjective map. Therefore o is a regular value of f which shows that Sp(2n, R)
is a smooth submanifold of GL(2n,R). The manifold dimension of the group is w
as this is the dimension of R32¢*". The smoothness of the induced multiplication and

inversion maps follows from part (a).

3.5 Immersions and embeddings

(a)
(b)

Formalize and prove the statement: an immersion is locally an embedding.

Let (M, A), (N,B) denote two smooth manifolds. Show that f : M — N is an
embedding if and only if f: M — f(M) is a diffeomorphism.

Solution:

(a)

Let (M, A) and (N, B) denote smooth manifolds of dimensions dim M = m and
dimN =n > m and let f : M — N be an immersion between the manifolds. The
statement can be formalized as follows:

For all x € M there is a neighborhood U of x such that f|ly : U — f(U) is an
embedding, i.e. an immersion mapping U homeomorphically to f(U).



In order to prove the statement consider a point x € M. We already know that if
f is an immersion in every neighborhood. So we only have to find a neighborhood
that is mapped homeomorphically to its image by f.

Applying the constant rank theorem to f (as an immersion rank(f) = dim(N) at
every point x € M) yields two charts (U,¢) € A, (V,¢) € B such that x € U,
fU)CVand o foeg™:¢(U) — (V) is given by o fod Hry,...,zm) =
(x1,...,Zm,0,...,0). This is the canonical embedding of ¢(U) C R™ into R". As
¢, are homeomorphisms by definition this shows that f|y : U — f(U) maps U
homeomorphically to U.

If f: M — f(M) is a diffeomorphism, it is clear that f : M — N is an embedding.
It is trivially a homeomorphism onto f(M) and as a diffeomorphism df, has to be

invertible for all x € M. This shows that it is also an immersion because rank(df,) =
dim(M) for all x € M.

If f: M — N is an embedding, f : M — f(M) is a smooth homeomorphism by
definition. It remains to show that f=' : f(M) — M is locally smooth. Therefore
take an arbitrary y € f(M) which is mapped to f~!(y) = x € M. Because f
is an immersion, we can use the constant rank theorem to obtain charts (U, ¢) €
A, (V,¢) € B such that x € U, f(U) C V and Yo fog™t : ¢(U) = (V) is
given by ¥ o fo ¢ N xy,...,zm) = (21,...,2,,0,...,0). Here m = dim(M) and
n = dim(N). Now we can write mo f~' o ¢p™! : ¢(f(U)) — R™ as the projection
mof~toypYxy,...,x,) = (z1,...,2,) which is of course smooth. As (f(U),) is a
chart of the manifold f(M) in a neighborhood of y € f(M) and because it is enough
to check smoothness or one pair of charts (due to Ex. 3.1(a)) this finishes the proof.



