Prof. Dr. M. Wolf M. Heinze WS 2018/19 SHEET 4

Differential Topology: Exercise Sheet 4

Exercises (for Dec. 5th and 6th)

4.1 Different definitions of tangent space

Consider the geometrically more intuitive definition of a tangent space from the motivating example in the lecture: Let M be a smooth submanifold embedded in some \mathbb{R}^n and define

$$\vec{T}_x M := \{ v \in \mathbb{R} \mid \gamma \in C^{\infty}((-1, 1), M), \gamma(0) = x, \gamma'(0) = v \}$$
 (1)

Show that the vector spaces T_xM and \vec{T}_xM are isomorphic, i.e, that the map $T_xM \to \vec{T}_xM$, $[\gamma] \mapsto \gamma'(0)$ is a vector space isomorphism.

4.2 Lie group actions

Let G denote a group and X an arbitrary set. A (left) group action of G on X is a map

$$\alpha: G \times X \to X$$

which has the properties

- $\alpha(e,\cdot) = \mathrm{id}_X$ for the unit element $e \in G$
- $\alpha(q, \alpha(h, x)) = \alpha(qh, x)$ for all $q, h \in G, x \in X$.

In the case where G is a Lie group and X is a smooth manifold, we call a Lie group action a smooth group action of G on X, i.e. α is a smooth map such that $\alpha(g,\cdot):X\to X$ is a diffeomorphism for every $g\in G$. In the following let α denote a Lie group action of the Lie group G on the smooth manifold X.

- (a) Show that $\alpha(\cdot, x): G \to X$ has constant rank for all $x \in X$. (Hint: Use that the left-multiplication $L_g: G \to G$ $L_g(h) = gh$ is a diffeomorphism.)
- (b) Let $G_x = \{h \in G | \alpha(h, x) = x\}$ be called the stabilizer of $x \in X$ and let $U \cdot G_x = \{g \cdot h | g \in U, h \in G_x\}$. Show that $\alpha(U \cdot G_x, x) = \alpha(U, x)$ and that for $U \subset G$ open, $U \cdot G_x$ is open.
- (c) Let G be a compact Lie group, $U \subset G$ open and $x \in X$. Show that $\alpha(U, x)$ is open.
- (d) Let G be a compact Lie group. Show that the orbit of $x \in X$ under the action α of G on X, defined as

$$\mathcal{O}_x = \alpha(G, x),$$

is a smooth submanifold of X.

- (e) Consider the special case G = U(n) of $n \times n$ unitary matrices and $X = \mathcal{H}_n$ of $n \times n$ Hermitian matrices. Show that the map $\alpha : U(n) \times \mathcal{H}_n \to \mathcal{H}_n$ defined by $\alpha(U, A) = UAU^*$ is a Lie group action.
- (f) Show that the unitary equivalence orbit of $A \in \mathcal{H}_n$, denoted by $\mathcal{O}_A = \{UAU^* | U \in U(n)\}$ is a smooth manifold.