

TECHNISCHE UNIVERSITÄT MÜNCHEN

Zentrum Mathematik

Summer 2019 Blatt 3

(11.05.2019)

PROF. DR. M. WOLF **Mathematical Introduction to Quantum Information Processing**

http://www-m5.ma.tum.de/Allgemeines/MA5057_2019S

Read the section Probabilistic structure of Quantum Theory in the lecture notes!

- 1. For the operator norm on $\mathcal{B}(\mathcal{H})$ show that
 - (a) $||A^*A|| = ||A||^2$ for all $A \in \mathcal{B}(\mathcal{H})$,
 - (b) $||A|| = \sup_{\|\psi\|=1} |\langle \psi, A\psi \rangle|$ for all Hermitian A.
- 2. Let $Q \in \mathcal{B}(\mathcal{H})$ be positive and such that $\ker(Q) = \{0\}$. Prove that $(A, B) \mapsto \operatorname{tr}[QA^*B]$ defines an inner product on $\mathcal{B}_2(\mathcal{H})$.
- 3. Construct a sequence of finite rank operators $A_n \in \mathcal{B}_0(\mathcal{H})$ that converges weakly to zero but not strongly. What about A_n^* ?
- 4. (a) Show that every trace-class operator can be written as a linear combination of four density operators.
 - (b) Let $V \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_2)$ be such that for every density operator $\rho \in \mathcal{B}_1(\mathcal{H}_1)$ the operator $V \rho V^*$ is again a density operator. What can be said about V?
 - (c) Prove the Bloch ball representation of density operators on \mathbb{C}^2 (Hint: use the determinant).
 - (d) For a given density operator on \mathbb{C}^2 , how can one obtain the parameters in the Bloch ball representation?
- 5. (a) For any \mathcal{H} construct a POVM that implements a 'biased coin' whose outcomes occur independently of the density operator with probabilities $\frac{1}{2}(1 \pm b)$, where $b \in [0, 1]$ is a fixed bias.
 - (b) Let $M : \mathbb{B} \to \mathcal{B}(\mathbb{C}^d)$ be a sharp POVM on (X, \mathbb{B}) . Prove that the number of pairwise disjoint elements in \mathbb{B} on which M is non-zero is at most d.