Quantum Effects [MA5047]

Sheet 2 Discussion: 12.11.2013

Exercise 1: (Wagner's polynomial matrix identity)

1. Let $A, B, C \in \mathbb{C}^{2 \times 2}$ be arbitrary. Prove that

$$[[A, B]^2, C] = 0$$

2. Is this true if $A, B, C \in \mathbb{C}^{3 \times 3}$? Either present a proof or a counterexample.

Exercise 2: (Robertson's uncertainty relation for *n* observables)

Let $A_1, \ldots, A_n \in \mathcal{B}(\mathcal{H})$ with some Hilbert space \mathcal{H} be Hermitian and $\psi \in \mathcal{H}$. Define matrices

$$\sigma_{kl} := \frac{i}{2} \langle \psi | [A_k, A_l] | \psi \rangle, \quad V_{kl} := \frac{1}{2} \langle \psi | \{A_k - \langle A_k \rangle \mathbb{1}, A_l - \langle A_l \rangle \mathbb{1} \}_+ | \psi \rangle$$

where $\{X, Y\}_+ := XY + YX$ is the *anti-commutator*. Show:

- 1. $V \ge i\sigma$
- 2. $\det(V) \ge \det(\sigma)$
- 3. for n = 2, 2, implies the uncertainty relation proven in the lecture for pure states.

Exercise 3:

Let $\rho \in \mathcal{B}(\mathcal{H}_A \otimes \mathcal{H}_B)$ be a density operator. Then

1. If $\{e_i \in \mathcal{H}_A\}$ and $\{f_l \in \mathcal{H}_B\}$ are orthonormal bases, then

$$\langle e_i, \rho_A e_j \rangle = \sum_l \langle e_i \otimes f_l, \rho \, e_j \otimes f_l \rangle$$

where ρ_A is the reduced density operator with respect to \mathcal{H}_A .

- 2. If $\rho = \rho_A \otimes \rho_B$, then ρ_A is the reduced density operator of ρ with respect to \mathcal{H}_A
- 3. If $\rho = |\phi\rangle\langle\phi|$ and $\phi = \sum_i \sqrt{\lambda_i} e_i \otimes f_i$ is a Schmidt decomposition, then $\rho_A = \sum_i \lambda_i |e_i\rangle\langle e_i|$ and $\rho_B = \sum_i \lambda_i |f_i\rangle\langle f_i|$ are the reduced density operators with respect to \mathcal{H}_A and \mathcal{H}_B respectively.