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Outline

De�nition and applications of the Logarithmic Sobolev 1

constant.

The Logarithmic Sobolev 1 constant for depolarizing

semigroups and applications to the concavity of the von

Neumann entropy.

The Logarithmic Sobolev 2 constant, hypercontractivity and

LS inequalities that tensorize with applications to the entropy

production.
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Logarithmic Sobolev 1 Constant

Given a Liouvillian L :Md →Md with stationary state σ ∈ D+
d

we want to estimate the convergence in the relative entropy:

D
(
etLρ||σ

)
≤ e−2α1tD (ρ||σ)

with D (ρ||σ) = tr[ρ(log(ρ)− log(σ))].

Daniel Stilck França Logarithmic Sobolev Inequalities for Entropy Production



Logarithmic Sobolev 1 Constant

Given a Liouvillian L :Md →Md with stationary state σ ∈ D+
d

we want to estimate the convergence in the relative entropy:

D
(
etLρ||σ

)
≤ e−2α1tD (ρ||σ)

with D (ρ||σ) = tr[ρ(log(ρ)− log(σ))].

Daniel Stilck França Logarithmic Sobolev Inequalities for Entropy Production



Logarithmic Sobolev 1 Constant

Given a primitive Liouvillian L :Md →Md with stationary state

σ ∈ D+
d
we want to estimate the convergence in the relative

entropy:

D
(
etLρ||σ

)
≤ e−2α1tD (ρ||σ) (1)

with D (ρ||σ) = tr[ρ(log(ρ)− log(σ))].
The largest α1 s.t. (1) holds for all t > 0 is the Logarithmic

Sobolev 1 constant.
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Entropy Production

For S(ρ) = −tr[ρ log(ρ)] the von Neumann entropy and doubly

stochastic Liouvillians (L(1) = L∗(1) = 0), a LS-1 inequality is

equivalent to:

S(etLρ)− S(ρ) ≥ (1− e−2αt)(log(d)− S(ρ))

Provides a way of quantifying the production of entropy by the

semigroup.
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Why you should care

LS inequalities have already found many applications, such as:

1 If we have a family of Liouvillians de�ned on a lattice that

have a LS constant which does not scale with size of the

system, this implies:

Strong notion of stability of observables w.r.t. perturbations of
the Liouvillian1.

1T. S. Cubitt et al. �Stability of local quantum dissipative systems�. In:
ArXiv e-prints (Mar. 2013). arXiv:1303.4744 [quant-ph]
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LS inequalities have already found many applications, such as:

1 If we have a family of Liouvillians de�ned on a lattice that

have a LS constant which does not scale with size of the

system, this implies:

Strong notion of stability of observables w.r.t. perturbations of
the Liouvillian
Area law and exponential decay of correlations for the
stationary state. 23.

2M. J. Kastoryano and J. Eisert. �Rapid mixing implies exponential decay of
correlations�. In: Journal of Mathematical Physics 54.10 (Oct. 2013),
p. 102201. DOI: 10.1063/1.4822481. arXiv:1303.6304 [quant-ph]

3F. G. S. L. Brandao et al. �Area law for �xed points of rapidly mixing
dissipative quantum systems�. In: ArXiv e-prints (May 2015).
arXiv:1505.02776 [quant-ph]
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Why you should care

LS inequalities have already found many applications, such as:

1 If we have a family of Liouvillians de�ned on a lattice that

have a LS constant which does not scale with size of the

system, this implies:

Strong notion of stability of observables w.r.t. perturbations of
the Liouvillian
Area law and exponential decay of correlations for the
stationary state.

2 These are all consequence of rapid mixing:

||etL(ρ)− σ||1 ≤ e−α1t
√
2 log

(
σ−1min

)

3 Re�nements of entropic inequalities.

4 Analysis of the lifetime of quantum memories.
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Di�erential Formulation

We can express the LS-1 constant as:

α1 (L) = inf
ρ∈D+

d

tr[L(ρ)(log(σ)− log(ρ))]

D (ρ||σ)

Hard to compute analytically! Only known for doubly stochastic,

reversible qubit Liouvillians!
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LS-1 Constant for the Depolarizing Channel

Using techniques from fractional programming, we have computed

this constant for the depolarizing channels Lσ(ρ) = tr(ρ)σ − ρ,
σ ∈ D+

d
arbitrary.

α1 (Lσ) = min
x∈[0,1]

1

2

(
1+

D2 (σmin||x)
D2 (x ||σmin)

)
where D2 is the binary relative entropy. We also have:

1 ≥ α1(Lσ) ≥
1

2

(
1+

√
σmin(1− σmin)

)
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Application: Concavity of the von Neumann Entropy

It follows from the last result that for ρ, σ ∈ Dd and q ∈ [0, 1] we
have

S((1− q)σ + qρ)− (1− q)S(σ)− qS(ρ) ≥

max

{
q(1− qc(σ))D(ρ‖σ)
(1− q)(1− (1− q)c(ρ))D(σ‖ρ)

,

with

c(σ) = min
x∈[0,1]

D2(σmin‖x)
D2(x‖σmin)

and c(ρ) de�ned in the same way.
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Similar Result by Kim and Ruskai

We have4:

S((1− q)σ + qρ)− (1− q)S(σ)− qS(ρ) ≥ (1− q)q

2
||ρ− σ||21

4Isaac Kim and Mary Beth Ruskai. �Bounds on the concavity of quantum
entropy�. In: Journal of Mathematical Physics 55.9, 092201 (2014), pp. �
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Comparison with Similar Results
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Figure : Comparison of bound the bound by Kim(red), ours (blue) and
the exact value S((1− q)σ + qρ)− (1− q)S(σ)− qS(ρ) (black).
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Entropy Production and Hypercontractivity

It is desirable to have lower bounds on α1(L) that are easier to
evaluate.

We will focus on doubly stochastic, reversible Liouvillians

(L = L∗,L(1) = 0).

For quantum memories it is desirable to have bounds that

tensorize, that is α1(L(n)) ≥ c and L(n) the generator of

(etL)⊗n.
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Hypercontractivity

The LS-2 constant of L is de�ned as the optimal α2 > 0 s.t. for all

X ∈M+
d
and t > 0

d
1
2
− 1

p(t)
||etLX ||p(t)
||X ||2

≤ 1

holds for p(t) = 1+ e2α2t .

Interpretation: larger p emphasizes the �peaks� in the spectrum of

X . If we have a small p-norm with p large, this means the

spectrum is ��at�.

α1 (L) ≥ α2 (L)
Easier to handle!
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Depolarizing channels again

Using a comparison technique, we show:

||L||α2
(
L 1

d

)
≥ α2 (L) ≥ λα2

(
L 1

d

)
where λ is the spectral gap of L (second smallest eigenvalue of

−L) .
This inequality tensorizes.

A bound for the depolarizing channel gives a universal lower

bound in terms of the spectral gap!
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Lower Bound for Depolarizing Channels

Use group theoretic techniques to relate the LS-2 constant of

the depolarizing channel to the LS-2 of a classical Markov

chain with known LS-2 constant.

These stay invariant under taking tensor powers, so we obtain:

α2

(
L(n)1

d

)
≥

(
1− 2d−2

)
log(3) log(d2 − 1) + 2 (1− 2d−2)

Improves upon previous bounds5 and has the right order of

magnitude.

5Kristan Temme, Fernando Pastawski, and Michael J Kastoryano.
�Hypercontractivity of quasi-free quantum semigroups�. In: Journal of Physics
A: Mathematical and Theoretical 47.40 (2014)
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General Doubly Stochastic Liouvillians

For any doubly stochastic Liouvillian it follows that:

α2

(
L(n)

)
≥ λ

(
1− 2d−2

)
log(3) log(d2 − 1) + 2 (1− 2d−2)

λ is its spectral gap.
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General Doubly Stochastic Liouvillians

In terms of the entropy production, we have that:

S(
(
etL
)⊗n

ρ)− S(ρ) ≥ (1− e−2αt)(n log(d)− S(ρ))

with α = λ
(1−2d−2)

log(3) log(d2−1)+2(1−2d−2)

This inequality can be used to analyze quantum memories

subjected to doubly stochastic noise.
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Summary

LS inequalities are a powerful framework to show entropic

inequalities and rapid mixing.

It is di�cult to obtain analytical results. Hypercontractivity is

a valuable tool to obtain lower bounds, especially for product

channels.

The potential quality of this bound decreases as the local

dimension increases, as made explicit by the depolarizing

semigroups.

The entropy always increases exponentially fast under local,

primitive and doubly stochastic noise.
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