BannerHauptseite TUMHauptseite LehrstuhlMathematik SchriftzugHauptseite LehrstuhlHauptseite Fakultät
Statistical Self-Similarity of One-Dimensional Growth Processes, M. Prähofer, H. Spohn, Physica A 279, 342 Pfeil (2000)
For one-dimensional growth processes we consider the distribution of the height above a given point of the substrate and study its scale invariance in the limit of large times. We argue that for self-similar growth from a single seed the universal distribution is the Tracy-Widom distribution from the theory of random matrices and that for the growth from a flat substrate it is some other, only numerically determined distribution. In particular, for the polynuclear growth model in the droplet geometry the height maps onto the longest increasing subsequence of a random permutation, from which the height distribution is identified as the Tracy-Widom distribution.